跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昇隆
研究生(外文):Sheng-Long Chen
論文名稱:利用薄膜生物反應槽處理低碳氮比出流水之研究
論文名稱(外文):A study of applying a membrane bioreactor for treating low carbon-nitrogen ratio effluent
指導教授:張家源張家源引用關係
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:118
中文關鍵詞:薄膜生物反應槽污泥停留時間鹼度氮化物低碳氮比化糞池出流水
外文關鍵詞:low carbon-nitrogen ratio influentNitrogenalkalinitysludge retention timeMembrane bioreactor
相關次數:
  • 被引用被引用:9
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
本研究建構一實驗室級好氧薄膜生物反應槽(Membrane bioreactor,簡稱MBR),探討處理低碳氮比進流水(化糞池出流水)之成效。
本研究探討各項水質參數之去除成效,實驗項目有:pH、溶氧(Dissolved oxygen,DO)、溫度、混合液懸浮固體物(Mixed liquid suspended solid,MLSS)、混合液揮發性懸浮固體物(Mixed liquid volatile suspended solid、MLVSS)、生化需氧量(Biochemical oxygen demand,BOD)、化學需氧量(Chemical oxygen demand,COD)、總有機碳(Total organic carbon,TOC)、比攝氧率(Specific oxygen uptake rate,SOUR)、污泥密度指標(Sludge density index,SDI)、總溶解固體物(Total dissolved solids,TDS)、胞外聚合物(extracellular polymeric substances,EPS)、總凱氏氮、氨氮、有機氮、亞硝酸鹽氮、硝酸鹽氮、鹼度、色度、濁度、過膜壓力與流通量。
研究期間為267天,共分為5個實驗階段進行,在固定操作參數方面,反應槽有效體積為12L,本系統固定水力停留時間(Hydraulic retention time,HRT)為6.48小時,薄膜抽停之模式,均以抽取5分鐘/停止1分鐘循環進行之;研究之變數主要包括NaHCO3添加濃度變化(0、250、500 mg/L)與不同之污泥停留時間(Sludge retention time,SRT)(不排泥操作、SRT=10天、SRT=20天)。
研究結果得知,反應槽中MLSS濃度以第3階段之9750 mg/L為最高,最低為第1階段之1953 mg/L,各階段平均MLSS濃度分別為3327 mg/L,5150 mg/L,9013 mg/L,6615 mg/L與4828 mg/L。比攝氧率(SOUR)方面,以第五階段(NaHCO3 500ppm,SRT 20天) SOUR值53 mg-O2/g-MLVSS-hr為最高。
各階段操作下之去除效率,TCOD去除率最高為96%,SCOD去除率最高為89%; TOC之去除率最高為89%;BOD5去除率最高為92%。
氨氮之轉換率以第五階段最佳,進流水氨氮與有機氮各占系統總氮量85.9%、13.3%,硝酸鹽氮0.7%,經硝化作用轉換後,氨氮與有機氮分別占系統總氮量4.7%、4.3%,硝酸鹽氮占系統88.5%,硝化作用進行明顯。
出流水濁度、TDS與SDI方面,濁度去除率達99.3%,出流水濁度低於1.8 UTN以下,且無SS測出;出流TDS之濃度以第三階段1069 mg/L為最高;出流SDI值介於4〜6之間。
由研究結果得知,添加鹼度及控制不同的SRT,將大幅影響COD去除率與硝化作用。
由本研究結果得知,MBR系統對於改善化糞池出流水水質,具有極佳之處理幼纂A本研究之結果可作為實廠應用之參考,並提供水回收再利用之另一替代方案。
In this study the performances of a laboratory scale membrane bioreactor (MBR) was examined for the aerobic treatment of low carbon-nitrogen ratio wastewater (septic tank effluent) for 267 days.
The indicators employed for examining the performances of the system were as follows: pH, dissolved oxygen (DO), temperature, mixed liquid suspended solid (MLSS), mixed liquid volatile suspended solid (MLVSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), specific oxygen uptake rate (SOUR), sludge density index (SDI), total dissolved solids (TDS), extracellular polymeric substances (EPS), total Kjeldahl nitrogen (TKN), NH4+-N, Org-N, NO2- -N, NO3- -N, alkalinity, true color (ADMI), turbidity, trans-membrane pressure (TMP) and flux.
A long-term operation of 267 days was divided into 5 stages according to changes in the levels of alkalinity and sludge retention time (SRT). The reactor was with a working volume of 12 L. In continuous operation the suction pump was stopped for 1 minute to allow membrane relaxation after each 5 minutes of filtration to give an average hydraulic retention time (HRT) of 6.48 hours. The duration of each stage was 73, 64, 34, 33 and 45 days respectively. No sludge was withdrawn during the stage 1, 2 and 3 operations. The SRT of stage 4 and stage 5 was 10 and 20 days respectively. 250 mg/L of NaHCO3 was added for stage 2 and 500 mg/L for stages 3, 4 and 5.
The results showed that the highest MLSS concentration of 9750 mg/L was found at stage 1 and the lowest MLSS concentration of 1953 mg/L was observed at stage X. The average concentration of MLSS of each stage was3327 mg/L,5150 mg/L,9013 mg/L,6615 mg/L and 4828 mg/L, respectively. As for SOUR, the highest value of 53 mg-O2/g-MLVSS-hr was obtained at stage 5 ( 500 mg NaHCO3/L addition and the SRT of 20 days).
Generally, the highest removal efficiency of TCOD (total COD), SCOD (soluble COD) TOC and BOD5 was 96%, 89%, 89% and 92%, respectively.
The highest conversation of ammonia-nitrogen was found at stage 5. NO2- -N was non-detected in the influent at stage 5 and the percentages of NH4+-N, Org-N and NO3- -N was 85.9%、13.3% and 0.7%, respectively. The results indicated that the nitrification was completely and the percentages of NH4+-N, Org-N and NO3- -N in effluent was 4.7%、4.3% and 88.5%, respectively.
Regarding the effluent turbidity, all the turbidity levels in the effluent were lower than 1.8 NTU and all the removal efficiencies were higher than 99% during the operation period. The highest TDS with a concentration of 1069 mg/L was found at stage 3. The values of effluent SDI varied from 4 to 6.
The results also revealed that the alkalinity supplement and SRT control would influence the COD removal and nitrification significantly.
This study showed that the treatment of septic tank effluent using a laboratory scale aerobic membrane bioreactor was feasible and effective. The results obtained from this study could be applied to the field works and considered as an alternative of household treatment unit for the advance purification of septic tank effluent.
中 文 摘 要……………………………………………………………….……I
英 文 摘 要…………………………………………………………………..IV
誌 謝……………………………………………………………………...….…V
目 錄…………………………………………………………………………...VI
圖 目 錄….…….……………………………………………………..………IX
表 目 錄…..………………………………………………………………...XIV
第一章 前 言………………………………………………..………………..1
1-1 研究緣起…………………………………………….…………….…..1
1-2 研究目的…………………………………………….………….……..1
第二章文獻回顧…………………………………………….…………...……2
2-1 薄膜生物程序……………………………………….………………...2
2-1-1 薄膜種類………………………………………….………………..2
2-1-2 薄膜生物程序…………………………………….………………..3
2-1-3 MBR相關處理成效………………………………………………10
2-2 氮之變化…………………………………………………….………..13
2-2-1 氮的條件………………………………………………….………13
2-2-2 生物處理原理…………………………………………….………14
2-2-3 硝化作用………………………………………………….………16
2-2-4 影響硝化作用之因子…………………………….……………17
第三章 實驗設備及研究方法……………………………………………19
3-1 反應槽設計 …..19
3-2 研究方法與流程 23
3-3 實驗藥品 25
3-3-1 實驗項目 25
3-3-2 實驗分析用藥 26
3-3-3 儀器用藥 29
3-3-4 分析儀器 29
3-4 污水之取得 31
3-4-1 污水來源 31
3-4-2 污水性質 …..32
3-5 薄膜介紹…………………………………………………..………36
3-6 實驗流程…………………………………………………..………37
第四章 結果與討論……………………………………….…………..…..38
4-1 不同階段參數選用………………..………………………………38
4-1-1 階段式流通量實驗.…………….….……………………..……38
4-1-2 薄膜抽停時間等級選定………..………………………..….…39
4-2 處理成效的分析…………………..….……………………………43
4.3 氮化物平衡………………………………………………………..80
4-4 進階討論…………………………………………………….….…87
第五章 結論……………………………….……………………….………93
5-1 結論……………. ……………. ……………. …………….………93
5-2 建議…………………………. ……………. ……………. …….....95
參考文獻……………………………………………………………………96
參考文獻
1.http://www.kochmembrane.com/
2. Brindle, K., Stephenson, T., “The applications of membrane biological
reactors for the treatment of wastewaters”, Biotechnol. Bioeng, Vol.49, pp.601-610,1996.
3. Pankhania, M., Brundle, K., Stephenson, T., “Membrane aeration
bioreactors for wastewater treatment: completely mixed and plug-flow
operation”, Chemical Engineering Journal, Vol. 73, No. 2, pp. 131-136,
1999.
4. Livingston, A. G., Arcangeli, J. P., Boam, A. T., Zhang, S., Marangon, M., Freitas, L. M., “Extractive membrane bioreactor for detoxification of
chemical industry wastes: process development”, Journal of Membrane
Science, Vol. 151, No. 1, pp. 29-44, 1998.
5. Ueda, T., Hata, K., Kikuoka, Y., “Wastewater treatment using Membrane Bioreactor”, Wat. Sci. Tech., Vol. 34. pp. 259, 1996.
6. Yamamoto, K., “Membrane filtration. In Rapid Filtration, Biological
Filtration and Membrane Filtration”, Gihodo Shuppan, Tokyo, 255, 1994.
7. Muller, E. B., “Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration”, Wat. Res, 29,
1179-1189, 1995.
8. Fan, X. J., Urbain, V., and Manem, J., “Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment”, Wat. Sci. Tech., Vol. 34, pp. 129-136, 1996.
9. Ueda, T., Hata, K., Kikuoka, Y., “Treatment of domestic sewage from
rural settlement by a membrane bioreactor”, Wat. Sci. Tech., Vol. 34, No. 9, pp. 189-196, 1996.
10. Silva, D. G. V., Urbain, V. D. H., Abeysinghe, B. E., “Advanced analysis of membrane-bioreactor performance with aerobicanoxiccycling”, Wat. Sci. Tech., Vol. 38, No. 4-5, pp. 505-512, 1998.
11. Cicek, N., Davel, J., Suidan, M. T., Audic, J., Genestet, P., “Effect of solids retention time on the performance and biological characteristics of a membrane bioreactor”, Wat. Sci. Tech., Vo. 43, No. 11, pp. 43-50, 2001.
12. Krauth, K. H., Staab, K. F., “Pressurized bioreactor with membrane
filtration for wastewater treatment”, Wat. Res., Vol. 27, pp. 405-411, 1993.
13. Chuang, S. H., “Fouling behavior in a macropores membrane bioreactor”, The second Taiwan-Japan joint symposium on membrane technology in environmental management, Taipei, 2003.
14. Cicek, N., Franco, J. P., Suidan, M. T., Urbain, V., Manem, J.,
“Characterization and Comparison of a Membrane Bioreactor and a
Conventional Activated-Sludge System in the Treatment of Wastewater
Containing High-Molecular-Weight Compounds”, Wat. Environ. Res., Vol. 71, pp. 64-70, 1999.
15. Mayhew, M., Stephenson, T., Environ, T., 18, 883, 1997.
16. Huang, X., Gui, P., Qian, Y., “Effect of sludge retention time on
microbial behaviour in a submerged membrane bioreactor”, Process
Biochemistry, Vol. 36, pp. 1001-1006, 2001.
17. Shim, J. K., Yoo, I. K., Lee, Y. M., “Design and operation consideration for wastewater treatment using a flat submerged membrane bioreactor”, Process Biochemistry, Vol. 38, pp. 279-285, 2002.
18. Kishino, H., Ishide, H., Iwabu, H., Nakano, I., “Domestic wastewater reuse using a submerged membrane bioreactor”, Vol. 106, pp. 115-119, 1996.
19. Bouhabila, E. H., Aïm, R. B., Buisson, H., “Fouling characterization in membrane bioreactors”, Separation and purification Technology, Vol. 22-23, pp. 123-132, 2001.
20. Chaize, S., Huyard, A., “Membrane bioreactor on domestic wastewater reatment sludge production and modeling approach”, Wat. Sci. Tech., Vol. 23, pp. 1591-1600, 1991.
21. Chiemchaisri, C., Yamamoto, K., Vigneswaran, S., “Household
membrane bioreactor in domestic wastewater treatment”, Wat. Sci. Tech., Vol. 27, pp. 171-178, 1993.
22. Bouhabila, E. H., Ben Aim, R., Buisson, H., “Microfiltration of activated sludge using submerged membrane with air bubbling(application to wastewater treatment) ”, Desalination, Vol. 118, pp. 315-322, 1998.
23. Madaeni, S. S. et. al., “ The effect of transmembrane pressure regimes onflux for the crossflow microfiltration of activated sludge”, Proceedings Chemeca, Vol. 94, pp. 309-316, 1994.
24. Nagaoka, H., Ueda, S., Miya, A., “Influence of bacterial extracellular polymers on the membrane separation activated sludge process”, Wat. Sci. Tech., Vol. 34, pp. 165-192, 1996.
25. Nagaoka, H., et. al., “Influence of organic loading rate on membrane fouling in membrane separation activated sludge process, International Specialized Conference on Membrane Technology in Environmental Management”, Tokyo, 1999.
26. Urase, T., Yamamoto, K., Ohgaki, S., “Evaluation of virus removal in membrane separation processes by using coliphage Qß, 3rd IAWPRC Regional Conference Asian Waterqual ’91”, Shanghai, Vol. 1, pp. 115-120, 1991.
27. Benefield, L. D., Randdall, C. W., “Biological process design for
wastewater treatment”, Vol. 38, pp. 197-200, 1977.
28. Focht, D. D., Verstraete, W., “Biochemical ecology of nitrification
and denitrification”, Adv. Microb. Ecol. Vol. 1, pp. 135-214. 1977.
29. Painter, H. A., Loveless, J. E., “Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated sludge process”, Wat. Res., Vol. 17, pp. 237-248, 1983.
30. EPA, U. S., “Process Design Manual for Nitrogen Control”, Office
Technology Transfer, Washington, DC, 1975.
31. Water Environment Federation, Biological and Chemical Systems for
Nutrient Removal. ISBN: 1-57278-123-8 1998.
32. Knowles, G., Downing, A. L., Barrett, M. T., “Determination of kinetic constants for nitrifying bacteria in mixed culture with the aid of an electronic computer”, J. Gen, Microbiol, Vol. 38, pp. 263-278, 1965.
33. Randall, C. W., Cokgor, E. U., “Modification and expansion of a pure
Oxygen WWTP for biological nutrient removal (BNR)”, Wat. Sci. Tech., Vol. 44, NO. 1, pp. 167~172, 2001.
34. Metcalf, Eddy, I., Wastewater Engineering: Treatment, Disposal, Reuse, rd Ed., McGraw-Hill, Inc., New York, 1991.
35. Kim, D., Kim, T. S. Ryu, H. D., Lee, S. I., ”Treatment of low carbon-to-nitrogen wastewater using two-stage sequencing batch reactor with independent nitrification”, Process Biochemistry, Vol. 43, pp. 406~413, 2008.
36. Kim, H. S., Choung, Y. K., Ahn, S. Seok Oh, H., “Enhancing nitrogen removal of piggery wastewater by membrane bioreactor combined with nitrification reactor”, Desalination Vol. 223, pp. 194–204, 2008.
37. Fontenot, Q., Bonvillain, C., Kilgen, M., Boopathy, R., “Effects of temperature, salinity, and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater”, Bioresource Technology Vol. 98, pp. 1700–1703, 2007.
38. Seixo, J., Varela, M. H., Coutinho, J. A. P., Coelho, M. A. Z., “Influence of C/N ratio on autotrophic biomass development in a sequencing batch reactor”, Biochemical Engineering Journal, Vol. 21, pp. 131–139, 2004.
39. Shin, J. H., Lee, S. M., Jung, J. Y., Chung, Y. C. Noh, S. H., “Enhanced COD and nitrogen removals for the treatment of swine wastewater by combining submerged membrane bioreactor (MBR) and anaerobic upflow bed filter (AUBF) reactor”, Process Biochemistry, Vol. 40, pp. 3769–3776, 2005.
40. Fatone, F., Battistoni, P., Bolzonella, D., Pavan, P., Cecchi, F., “Long-term experience with an automatic process control for nitrogen removal in membrane bioreactors”, Desalination, Vol. 227 pp. 72–84, 2008.
41. Magdalena, A., Dytczak, Kathleen, L., Londry, J., Oleszkiewicz, A. “Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates”, WATERRE SEARCH, Vol. 42, pp. 2320 – 2328, 2008.
42. Eldon, R., Rene, S. J., Kim, H. Park, S., “EVect of COD/N ratio and salinity on the performance of sequencing batch reactors”, Bioresource Technology, Vol. 99 pp. 839–846, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊