( 您好!臺灣時間:2022/05/29 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱:斑馬魚中cyclin-dependent kinase like 1(CDKL1)蛋白的選殖、表現模式及功能分析
論文名稱(外文):Identification, expression pattern and characterization of zebrafish cyclin-dependent protein kinase-like 1 (zCDKL1)
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Cyclin-dependant protein kinase (CDK) 家族在許多生物功能中扮演著重要的角色,例如:細胞週期的進行,RNA的轉錄,代謝,細胞凋亡及神經功能。此篇論文中,我們在斑馬魚中找到ㄧ個新的CDC2相關蛋白,稱為cyclin-dependent protein kinase like 1 (zCDKL1)。zCDKL1能轉錄350個胺基酸並具有X-Ser-Pro-X 區域, 此蛋白屬於proline-directed Serine/Threnine 激酶家族中的 KKIALRE。在胺基酸比對下,斑馬魚的CDKL1與其他物種有50%到78%的同源性。利用RT-PCR,發現在受精後0到48小時斑馬魚胚胎中皆可偵測到zCDKL1 mRNA 的表現,而其成魚表現的位置主要在腦、眼睛、睪丸和卵巢。另外用全胚體原位雜合技術觀察,則zCDKL1出現在受精後24到48小時胚胎中的 floor plate,背部神經節 和hypocord 。而僅在受精後24到36小時中,zCDKL1會表現在腎原管。在HEK293細胞中,zCDKL1 蛋白散佈在細胞核與細胞質。利用體外激酶活性測試(In vitro kinase assay),zCDKL1 蛋白具有磷酸化 髓鞘鹼性蛋白 (myelin basic protein) 和 組蛋白H1 (histone H1)的功能。藉由注射專一性的反義寡核酸將斑馬魚胚胎 CDKL1基因抑制,發現會造成胚胎中體節的突變,身體軸線的彎曲和尾巴變短等現象。而加入CDKL1 mRNA能具專一性修復注射CDKL1反義寡核酸所造成的傷害。這些結果證實,zCDKL1蛋白在斑馬魚的神經發育中,扮演著重要的角色。

Members of the cyclin-dependent kinase (Cdk) family play important regulatory roles in the control of cell-cycle progression, transcription metabolism, apoptosis, and neuronal function. In this study, we have isolated a novel protein kinase termed cyclin- dependent kinase like 1 in zebrafish (zCDKL1). zCDKL1 which is a Cdc2-related protein kinase, encoded polypeptide that is 350 amino acids with the X-Ser-Pro-X motif, and indicated that this protein belonged to the proline-directed Ser/Thr protein kinase family (KKIALRE). Based on amino acids sequence alignment, we have found that the zebrafish CDKL1 shared 50% to 77% homology to orthologs from other species. By reverse transcription-PCR analysis, zCDKL1 mRNA was expressed from fertilization to 48 hours post fertilization of zebrafish. Transcript of zCDKL1 was expressed in all adult tissues and enriched in brain, eyes, testes and ovary. In situ hybridization showed that CDKL1 was expressed in the floor plate, dorsal neuron tube, hypocord at 12 to 48 hours post fertilization whereas expression at pronephric tube was only found in 24 and 36 hour post feterlization. The zCDKL1 was diffusely expressed in nucleus and cytoplasm when overexpressed in HEK293 cells. In vitro kinase assay, the ability of zCDKL1 was toward phosphorylation of myelin basic protein and histone H1. Embryos injected with MOs directed against CDKL1 (cdkl1 MOs) showed developmental defects, including deformed somites, body axis curvature and a shortened trunk by 24hpf. These results suggested that CDKL1 may play a pivotal role in the development of ventral nervous system in zebrafish embryos.


壹、中英文摘要.............................. 1

1.Hanks, S.K., Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol, 2003. 4(5): p. 111.
2.Santamaria, D. and S. Ortega, Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Front Biosci, 2006. 11: p. 1164-88.
3.Sridhar, J., N. Akula, and N. Pattabiraman, Selectivity and potency of cyclin-dependent kinase inhibitors. Aaps J, 2006. 8(1): p. E204-21.
4.Ren, S. and B.J. Rollins, Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell, 2004. 117(2): p. 239-51.
5.Sage, J., Cyclin C makes an entry into the cell cycle. Dev Cell, 2004. 6(5): p. 607-8.
6.Loncle, N., et al., Distinct roles for Mediator Cdk8 module subunits in Drosophila development. Embo J, 2007. 26(4): p. 1045-54.
7.Wang, S. and P.M. Fischer, Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci, 2008. 29(6): p. 302-13.
8.Meyerson, M., et al., A family of human cdc2-related protein kinases. Embo J, 1992. 11(8): p. 2909-17.
9.Sassa, T., et al., Identification of variants and dual promoters of murine serine/threonine kinase KKIAMRE. J Neurochem, 2000. 74(5): p. 1809-19.
10.Kasten, M. and A. Giordano, Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene, 2001. 20(15): p. 1832-8.
11.Bullrich, F., et al., Chromosomal mapping of members of the cdc2 family of protein kinases, cdk3, cdk6, PISSLRE, and PITALRE, and a cdk inhibitor, p27Kip1, to regions involved in human cancer. Cancer Res, 1995. 55(6): p. 1199-205.
12.Crawford, J., et al., The PISSLRE gene: structure, exon skipping, and exclusion as tumor suppressor in breast cancer. Genomics, 1999. 56(1): p. 90-7.
13.Jaluria, P., et al., Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnol, 2007. 7: p. 71.
14.Yee, K.W., et al., NKIAMRE, a novel conserved CDC2-related kinase with features of both mitogen-activated protein kinases and cyclin-dependent kinases. Biochem Biophys Res Commun, 2003. 308(4): p. 784-92.
15.Midmer, M., et al., Identification of NKIAMRE, the human homologue to the mitogen-activated protein kinase-/cyclin-dependent kinase-related protein kinase NKIATRE, and its loss in leukemic blasts with chromosome arm 5q deletion. Cancer Res, 1999. 59(16): p. 4069-74.
16.Haq, R., et al., NKIATRE is a novel conserved cdc2-related kinase. Genomics, 2001. 71(2): p. 131-41.
17.Sassa, T., H. Gomi, and S. Itohara, Postnatal expression of Cdkl2 in mouse brain revealed by LacZ inserted into the Cdkl2 locus. Cell Tissue Res, 2004. 315(2): p. 147-56.
18.Gomi, H., et al., Learning induces a CDC2-related protein kinase, KKIAMRE. J Neurosci, 1999. 19(21): p. 9530-7.
19.Yen, S.H., et al., The distribution and biochemical properties of a Cdc2-related kinase, KKIALRE, in normal and Alzheimer brains. J Neurochem, 1995. 65(6): p. 2577-84.
20.Han, I.S., et al., Cdc2-mediated Schwann cell migration during peripheral nerve regeneration. J Cell Sci, 2007. 120(Pt 2): p. 246-55.
21.Crighton, D., et al., DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006. 126(1): p. 121-34.
22.Patzke, H. and L.H. Tsai, Cdk5 sinks into ALS. Trends Neurosci, 2002. 25(1): p. 8-10.
23.Shelton, S.B. and G.V. Johnson, Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem, 2004. 88(6): p. 1313-26.
24.Hamdane, M., et al., p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death. J Cell Sci, 2005. 118(Pt 6): p. 1291-8.
25.Konishi, Y. and A. Bonni, The E2F-Cdc2 cell-cycle pathway specifically mediates activity deprivation-induced apoptosis of postmitotic neurons. J Neurosci, 2003. 23(5): p. 1649-58.
26.Clarke, A.R., et al., Requirement for a functional Rb-1 gene in murine development. Nature, 1992. 359(6393): p. 328-30.
27.Ferguson, K.L., et al., The Rb-CDK4/6 signaling pathway is critical in neural precursor cell cycle regulation. J Biol Chem, 2000. 275(43): p. 33593-600.
28.Hirose, T., et al., PCTAIRE 2, a Cdc2-related serine/threonine kinase, is predominantly expressed in terminally differentiated neurons. Eur J Biochem, 1997. 249(2): p. 481-8.
29.Strahle, U., et al., Vertebrate floor-plate specification: variations on common themes. Trends Genet, 2004. 20(3): p. 155-62.
30.Placzek, M. and J. Briscoe, The floor plate: multiple cells, multiple signals. Nat Rev Neurosci, 2005. 6(3): p. 230-40.
31.Strahle, U., P. Blader, and P.W. Ingham, Expression of axial and sonic hedgehog in wildtype and midline defective zebrafish embryos. Int J Dev Biol, 1996. 40(5): p. 929-40.
32.Odenthal, J., et al., Two distinct cell populations in the floor plate of the zebrafish are induced by different pathways. Dev Biol, 2000. 219(2): p. 350-63.
33.Placzek, M., J. Dodd, and T.M. Jessell, Discussion point. The case for floor plate induction by the notochord. Curr Opin Neurobiol, 2000. 10(1): p. 15-22.
34.Currie, P.D. and P.W. Ingham, Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature, 1996. 382(6590): p. 452-5.
35.Lewis, K.E. and J.S. Eisen, Hedgehog signaling is required for primary motoneuron induction in zebrafish. Development, 2001. 128(18): p. 3485-95.
36.Kimmel, C.B., et al., Stages of embryonic development of the zebrafish. Dev Dyn, 1995. 203(3): p. 253-310.
37.Wells, J.M. and D.A. Melton, Vertebrate endoderm development. Annu Rev Cell Dev Biol, 1999. 15: p. 393-410.
38.Ikegami, R., P. Hunter, and T.D. Yager, Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev Biol, 1999. 209(2): p. 409-33.
39.Inohara, N. and G. Nunez, Genes with homology to mammalian apoptosis regulators identified in zebrafish. Cell Death Differ, 2000. 7(5): p. 509-10.
40.Sudbery, P.E., A.R. Goodey, and B.L. Carter, Genes which control cell proliferation in the yeast Saccharomyces cerevisiae. Nature, 1980. 288(5789): p. 401-4.
41.Lee, M.G. and P. Nurse, Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature, 1987. 327(6117): p. 31-5.
42.Ghiselli, G. and S.A. Farber, D-glucuronyl C5-epimerase acts in dorso-ventral axis formation in zebrafish. BMC Dev Biol, 2005. 5: p. 19.
43.Hanks, S.K. and T. Hunter, Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J, 1995. 9(8): p. 576-96.
44.Taglienti, C.A., M. Wysk, and R.J. Davis, Molecular cloning of the epidermal growth factor-stimulated protein kinase p56 KKIAMRE. Oncogene, 1996. 13(12): p. 2563-74.
45.Kim, S.O., S. Katz, and S.L. Pelech, Expression of second messenger- and cyclin-dependent protein kinases during postnatal development of rat heart. J Cell Biochem, 1998. 69(4): p. 506-21.
46.Latimer, A.J., J. Shin, and B. Appel, her9 promotes floor plate development in zebrafish. Dev Dyn, 2005. 232(4): p. 1098-104.
47.Appel, B., et al., Delta-mediated specification of midline cell fates in zebrafish embryos. Curr Biol, 1999. 9(5): p. 247-56.
48.van Straaten, H.W. and J.W. Hekking, Development of floor plate, neurons and axonal outgrowth pattern in the early spinal cord of the notochord-deficient chick embryo. Anat Embryol (Berl), 1991. 184(1): p. 55-63.
49.Yamada, T., et al., Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell, 1991. 64(3): p. 635-47.
50.Litingtung, Y. and C. Chiang, Control of Shh activity and signaling in the neural tube. Dev Dyn, 2000. 219(2): p. 143-54.
51.Muller, F., et al., Direct action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development, 2000. 127(18): p. 3889-97.
52.Strahle, U., et al., Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev, 1993. 7(7B): p. 1436-46.
53.Rastegar, S., et al., A floor plate enhancer of the zebrafish netrin1 gene requires Cyclops (Nodal) signalling and the winged helix transcription factor FoxA2. Dev Biol, 2002. 252(1): p. 1-14.
54.Norton, W.H., et al., Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones. Development, 2005. 132(4): p. 645-58.

第一頁 上一頁 下一頁 最後一頁 top