|
1.Hanks, S.K., Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol, 2003. 4(5): p. 111. 2.Santamaria, D. and S. Ortega, Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Front Biosci, 2006. 11: p. 1164-88. 3.Sridhar, J., N. Akula, and N. Pattabiraman, Selectivity and potency of cyclin-dependent kinase inhibitors. Aaps J, 2006. 8(1): p. E204-21. 4.Ren, S. and B.J. Rollins, Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell, 2004. 117(2): p. 239-51. 5.Sage, J., Cyclin C makes an entry into the cell cycle. Dev Cell, 2004. 6(5): p. 607-8. 6.Loncle, N., et al., Distinct roles for Mediator Cdk8 module subunits in Drosophila development. Embo J, 2007. 26(4): p. 1045-54. 7.Wang, S. and P.M. Fischer, Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci, 2008. 29(6): p. 302-13. 8.Meyerson, M., et al., A family of human cdc2-related protein kinases. Embo J, 1992. 11(8): p. 2909-17. 9.Sassa, T., et al., Identification of variants and dual promoters of murine serine/threonine kinase KKIAMRE. J Neurochem, 2000. 74(5): p. 1809-19. 10.Kasten, M. and A. Giordano, Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene, 2001. 20(15): p. 1832-8. 11.Bullrich, F., et al., Chromosomal mapping of members of the cdc2 family of protein kinases, cdk3, cdk6, PISSLRE, and PITALRE, and a cdk inhibitor, p27Kip1, to regions involved in human cancer. Cancer Res, 1995. 55(6): p. 1199-205. 12.Crawford, J., et al., The PISSLRE gene: structure, exon skipping, and exclusion as tumor suppressor in breast cancer. Genomics, 1999. 56(1): p. 90-7. 13.Jaluria, P., et al., Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnol, 2007. 7: p. 71. 14.Yee, K.W., et al., NKIAMRE, a novel conserved CDC2-related kinase with features of both mitogen-activated protein kinases and cyclin-dependent kinases. Biochem Biophys Res Commun, 2003. 308(4): p. 784-92. 15.Midmer, M., et al., Identification of NKIAMRE, the human homologue to the mitogen-activated protein kinase-/cyclin-dependent kinase-related protein kinase NKIATRE, and its loss in leukemic blasts with chromosome arm 5q deletion. Cancer Res, 1999. 59(16): p. 4069-74. 16.Haq, R., et al., NKIATRE is a novel conserved cdc2-related kinase. Genomics, 2001. 71(2): p. 131-41. 17.Sassa, T., H. Gomi, and S. Itohara, Postnatal expression of Cdkl2 in mouse brain revealed by LacZ inserted into the Cdkl2 locus. Cell Tissue Res, 2004. 315(2): p. 147-56. 18.Gomi, H., et al., Learning induces a CDC2-related protein kinase, KKIAMRE. J Neurosci, 1999. 19(21): p. 9530-7. 19.Yen, S.H., et al., The distribution and biochemical properties of a Cdc2-related kinase, KKIALRE, in normal and Alzheimer brains. J Neurochem, 1995. 65(6): p. 2577-84. 20.Han, I.S., et al., Cdc2-mediated Schwann cell migration during peripheral nerve regeneration. J Cell Sci, 2007. 120(Pt 2): p. 246-55. 21.Crighton, D., et al., DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006. 126(1): p. 121-34. 22.Patzke, H. and L.H. Tsai, Cdk5 sinks into ALS. Trends Neurosci, 2002. 25(1): p. 8-10. 23.Shelton, S.B. and G.V. Johnson, Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem, 2004. 88(6): p. 1313-26. 24.Hamdane, M., et al., p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death. J Cell Sci, 2005. 118(Pt 6): p. 1291-8. 25.Konishi, Y. and A. Bonni, The E2F-Cdc2 cell-cycle pathway specifically mediates activity deprivation-induced apoptosis of postmitotic neurons. J Neurosci, 2003. 23(5): p. 1649-58. 26.Clarke, A.R., et al., Requirement for a functional Rb-1 gene in murine development. Nature, 1992. 359(6393): p. 328-30. 27.Ferguson, K.L., et al., The Rb-CDK4/6 signaling pathway is critical in neural precursor cell cycle regulation. J Biol Chem, 2000. 275(43): p. 33593-600. 28.Hirose, T., et al., PCTAIRE 2, a Cdc2-related serine/threonine kinase, is predominantly expressed in terminally differentiated neurons. Eur J Biochem, 1997. 249(2): p. 481-8. 29.Strahle, U., et al., Vertebrate floor-plate specification: variations on common themes. Trends Genet, 2004. 20(3): p. 155-62. 30.Placzek, M. and J. Briscoe, The floor plate: multiple cells, multiple signals. Nat Rev Neurosci, 2005. 6(3): p. 230-40. 31.Strahle, U., P. Blader, and P.W. Ingham, Expression of axial and sonic hedgehog in wildtype and midline defective zebrafish embryos. Int J Dev Biol, 1996. 40(5): p. 929-40. 32.Odenthal, J., et al., Two distinct cell populations in the floor plate of the zebrafish are induced by different pathways. Dev Biol, 2000. 219(2): p. 350-63. 33.Placzek, M., J. Dodd, and T.M. Jessell, Discussion point. The case for floor plate induction by the notochord. Curr Opin Neurobiol, 2000. 10(1): p. 15-22. 34.Currie, P.D. and P.W. Ingham, Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature, 1996. 382(6590): p. 452-5. 35.Lewis, K.E. and J.S. Eisen, Hedgehog signaling is required for primary motoneuron induction in zebrafish. Development, 2001. 128(18): p. 3485-95. 36.Kimmel, C.B., et al., Stages of embryonic development of the zebrafish. Dev Dyn, 1995. 203(3): p. 253-310. 37.Wells, J.M. and D.A. Melton, Vertebrate endoderm development. Annu Rev Cell Dev Biol, 1999. 15: p. 393-410. 38.Ikegami, R., P. Hunter, and T.D. Yager, Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev Biol, 1999. 209(2): p. 409-33. 39.Inohara, N. and G. Nunez, Genes with homology to mammalian apoptosis regulators identified in zebrafish. Cell Death Differ, 2000. 7(5): p. 509-10. 40.Sudbery, P.E., A.R. Goodey, and B.L. Carter, Genes which control cell proliferation in the yeast Saccharomyces cerevisiae. Nature, 1980. 288(5789): p. 401-4. 41.Lee, M.G. and P. Nurse, Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature, 1987. 327(6117): p. 31-5. 42.Ghiselli, G. and S.A. Farber, D-glucuronyl C5-epimerase acts in dorso-ventral axis formation in zebrafish. BMC Dev Biol, 2005. 5: p. 19. 43.Hanks, S.K. and T. Hunter, Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J, 1995. 9(8): p. 576-96. 44.Taglienti, C.A., M. Wysk, and R.J. Davis, Molecular cloning of the epidermal growth factor-stimulated protein kinase p56 KKIAMRE. Oncogene, 1996. 13(12): p. 2563-74. 45.Kim, S.O., S. Katz, and S.L. Pelech, Expression of second messenger- and cyclin-dependent protein kinases during postnatal development of rat heart. J Cell Biochem, 1998. 69(4): p. 506-21. 46.Latimer, A.J., J. Shin, and B. Appel, her9 promotes floor plate development in zebrafish. Dev Dyn, 2005. 232(4): p. 1098-104. 47.Appel, B., et al., Delta-mediated specification of midline cell fates in zebrafish embryos. Curr Biol, 1999. 9(5): p. 247-56. 48.van Straaten, H.W. and J.W. Hekking, Development of floor plate, neurons and axonal outgrowth pattern in the early spinal cord of the notochord-deficient chick embryo. Anat Embryol (Berl), 1991. 184(1): p. 55-63. 49.Yamada, T., et al., Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell, 1991. 64(3): p. 635-47. 50.Litingtung, Y. and C. Chiang, Control of Shh activity and signaling in the neural tube. Dev Dyn, 2000. 219(2): p. 143-54. 51.Muller, F., et al., Direct action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development, 2000. 127(18): p. 3889-97. 52.Strahle, U., et al., Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev, 1993. 7(7B): p. 1436-46. 53.Rastegar, S., et al., A floor plate enhancer of the zebrafish netrin1 gene requires Cyclops (Nodal) signalling and the winged helix transcription factor FoxA2. Dev Biol, 2002. 252(1): p. 1-14. 54.Norton, W.H., et al., Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones. Development, 2005. 132(4): p. 645-58.
|