王泳 抗癌中藥的臨床應用. 中醫葯研究, 16: 20, 2000
徐榮源 C型肝炎與肝癌. 國防醫學, 27: 189-192, 1998.1.Lee, C. C., Liu, J. Y., Lin, J. K., Chu, J. S., and Shew, J. Y. p53 point mutation enhanced by hepatic regeneration in aflatoxin B1-induced rat liver tumors and preneoplastic lesions. Cancer Lett, 125: 1-7, 1998.
2.Morgan, T. R., Mandayam, S., and Jamal, M. M. Alcohol and hepatocellular carcinoma. Gastroenterology, 127: S87-96, 2004.
3.Shieh, Y. S., Nguyen, C., Vocal, M. V., and Chu, H. W. Tumor-suppressor p53 gene in hepatitis C and B virus-associated human hepatocellular carcinoma. Int J Cancer, 54: 558-562, 1993.
4.El-Serag, H. B., Marrero, J. A., Rudolph, L., and Reddy, K. R. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology, 134: 1752-1763, 2008.
5.Sultana, S., Perwaiz, S., Iqbal, M., and Athar, M. Crude extracts of hepatoprotective plants, Solanum nigrum and Cichorium intybus inhibit free radical-mediated DNA damage. J Ethnopharmacol, 45: 189-192, 1995.
6.Prashanth Kumar, V., Shashidhara, S., Kumar, M. M., and Sridhara, B. Y. Cytoprotective role of Solanum nigrum against gentamicin-induced kidney cell (Vero cells) damage in vitro. Fitoterapia, 72: 481-486, 2001.
7.Lin, H. M., Tseng, H. C., Wang, C. J., Lin, J. J., Lo, C. W., and Chou, F. P. Hepatoprotective effects of Solanum nigrum Linn extract against CCl(4)-induced oxidative damage in rats. Chem Biol Interact, 171: 283-293, 2008.
8.Zakaria, Z. A., Gopalan, H. K., Zainal, H., Mohd Pojan, N. H., Morsid, N. A., Aris, A., and Sulaiman, M. R. Antinociceptive, anti-inflammatory and antipyretic effects of Solanum nigrum chloroform extract in animal models. Yakugaku Zasshi, 126: 1171-1178, 2006.
9.Moundipa, P. F. and Domngang, F. M. Effect of the leafy vegetable Solanum nigrum on the activities of some liver drug-metabolizing enzymes after aflatoxin B1 treatment in female rats. Br J Nutr, 65: 81-91, 1991.
10.Nadeem, M., Dandiya, P. C., Pasha, K. V., Imran, M., Balani, D. K., and Vohora, S. B. Hepatoprotective activity of Solanum nigrum fruits. Fitoterapia 68: 245-251, 1997.
11.Saijo, R., Murakami, K., Nohara, T., Tomimatsu, T., Sato, A., and Matsuoka, K. [Studies on the constituents of Solanum plants. II. On the constituents of the immature berries of Solanum nigrum L. (author''s transl)]. Yakugaku Zasshi, 102: 300-305, 1982.
12.Hu, K., Kobayashi, H., Dong, A., Jing, Y., Iwasaki, S., and Yao, X. Antineoplastic agents. III: Steroidal glycosides from Solanum nigrum. Planta Med, 65: 35-38, 1999.
13.Son YO, K. J., Lim JC, Chung Y, Chung GH, Lee JC. Ripe fruit of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem Toxicol., 41: 142-148, 2003.
14.Lee, S. J., Oh, P. S., Ko, J. H., Lim, K., and Lim, K. T. A 150-kDa glycoprotein isolated from Solanum nigrum L. has cytotoxic and apoptotic effects by inhibiting the effects of protein kinase C alpha, nuclear factor-kappa B and inducible nitric oxide in HCT-116 cells. Cancer Chemother Pharmacol, 54: 562-572, 2004.
15.Heo KS, L. S., Ko JH, Lim K, Lim KT. Glycoprotein isolated from Solanum nigrum L. inhibits the DNA-binding activities of NF-kappaB and AP-1, and increases the production of nitric oxide in TPA-stimulated MCF-7 cells. Toxicol In Vitro., 18: 755-763, 2004.
16.Lin, H. M., Tseng, H. C., Wang, C. J., Chyau, C. C., Liao, K. K., Peng, P. L., and Chou, F. P. Induction of autophagy and apoptosis by the extract of Solanum nigrum Linn in HepG2 cells. J Agric Food Chem, 55: 3620-3628, 2007.
17.JB, H. Methods in plant biochemistry.I:plant phenolics. London: Academic Press, 1989.
18.Scalbert, A., Morand, C., Manach, C., and Remesy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother, 56: 276-282, 2002.
19.Yoon, J. H. and Baek, S. J. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J, 46: 585-596, 2005.
20.Manach, C., Scalbert, A., Morand, C., Remesy, C., and Jimenez, L. Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79: 727-747, 2004.
21.Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem, 18: 427-442, 2007.
22.Hollman, P. C., van Trijp, J. M., Buysman, M. N., van der Gaag, M. S., Mengelers, M. J., de Vries, J. H., and Katan, M. B. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett, 418: 152-156, 1997.
23.Nigdikar, S. V., Williams, N. R., Griffin, B. A., and Howard, A. N. Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. Am J Clin Nutr, 68: 258-265, 1998.
24.Robak, J. and Gryglewski, R. J. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol, 37: 837-841, 1988.
25.Martin, A. R., Villegas, I., La Casa, C., and de la Lastra, C. A. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem Pharmacol, 67: 1399-1410, 2004.
26.Hibasami, H., Achiwa, Y., Fujikawa, T., and Komiya, T. Induction of programmed cell death (apoptosis) in human lymphoid leukemia cells by catechin compounds. Anticancer Res, 16: 1943-1946, 1996.
27.Kemberling, J. K., Hampton, J. A., Keck, R. W., Gomez, M. A., and Selman, S. H. Inhibition of bladder tumor growth by the green tea derivative epigallocatechin-3-gallate. J Urol, 170: 773-776, 2003.
28.Brusselmans, K., De Schrijver, E., Heyns, W., Verhoeven, G., and Swinnen, J. V. Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int J Cancer, 106: 856-862, 2003.
29.Horie, N., Hirabayashi, N., Takahashi, Y., Miyauchi, Y., Taguchi, H., and Takeishi, K. Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biol Pharm Bull, 28: 574-579, 2005.
30.Chen, C., Shen, G., Hebbar, V., Hu, R., Owuor, E. D., and Kong, A. N. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis, 24: 1369-1378, 2003.
31.Yang, G. Y., Liao, J., Kim, K., Yurkow, E. J., and Yang, C. S. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis, 19: 611-616, 1998.
32.Kuo, P. L. and Lin, C. C. Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci, 10: 219-227, 2003.
33.Johnson, D. G. and Walker, C. L. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39: 295-312, 1999.
34.MacLachlan, T. K., Sang, N., and Giordano, A. Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit Rev Eukaryot Gene Expr, 5: 127-156, 1995.
35.Mudryj, M., Devoto, S. H., Hiebert, S. W., Hunter, T., Pines, J., and Nevins, J. R. Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell, 65: 1243-1253, 1991.
36.Reed, S. I., Bailly, E., Dulic, V., Hengst, L., Resnitzky, D., and Slingerland, J. G1 control in mammalian cells. J Cell Sci Suppl, 18: 69-73, 1994.
37.Lobrich, M. and Jeggo, P. A. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer, 7: 861-869, 2007.
38.Takizawa, C. G. and Morgan, D. O. Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol, 12: 658-665, 2000.
39.Hutchins, J. R. and Clarke, P. R. Many fingers on the mitotic trigger: post-translational regulation of the Cdc25C phosphatase. Cell Cycle, 3: 41-45, 2004.
40.Hermeking, H., Lengauer, C., Polyak, K., He, T. C., Zhang, L., Thiagalingam, S., Kinzler, K. W., and Vogelstein, B. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell, 1: 3-11, 1997.
41.Kamesaki, H. Mechanisms involved in chemotherapy-induced apoptosis and their implications in cancer chemotherapy. Int J Hematol, 68: 29-43, 1998.
42.Kerr, J. F., Wyllie, A. H., and Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26: 239-257, 1972.
43.Williams, G. T. Apoptosis in the immune system. J Pathol, 173: 1-4, 1994.
44.Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science, 267: 1456-1462, 1995.
45.Saraste, A. and Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res, 45: 528-537, 2000.
46.Fumarola, C. and Guidotti, G. G. Stress-induced apoptosis: toward a symmetry with receptor-mediated cell death. Apoptosis, 9: 77-82, 2004.
47.Smith, C. A., Farrah, T., and Goodwin, R. G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell, 76: 959-962, 1994.
48.Bratton, S. B., MacFarlane, M., Cain, K., and Cohen, G. M. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res, 256: 27-33, 2000.
49.Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 15: 269-290, 1999.
50.Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86: 147-157, 1996.
51.Du, C., Fang, M., Li, Y., Li, L., and Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102: 33-42, 2000.
52.Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397: 441-446, 1999.
53.Li, L. Y., Luo, X., and Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 412: 95-99, 2001.
54.Donovan, M. and Cotter, T. G. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim Biophys Acta, 1644: 133-147, 2004.
55.Daugas, E., Nochy, D., Ravagnan, L., Loeffler, M., Susin, S. A., Zamzami, N., and Kroemer, G. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett, 476: 118-123, 2000.
56.Harris, M. H. and Thompson, C. B. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ, 7: 1182-1191, 2000.
57.Nunez, G., Benedict, M. A., Hu, Y., and Inohara, N. Caspases: the proteases of the apoptotic pathway. Oncogene, 17: 3237-3245, 1998.
58.Lewis, T. S., Shapiro, P. S., and Ahn, N. G. Signal transduction through MAP kinase cascades. Adv Cancer Res, 74: 49-139, 1998.
59.Johnson, G. L. and Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298: 1911-1912, 2002.
60.Mansouri, A., Ridgway, L. D., Korapati, A. L., Zhang, Q., Tian, L., Wang, Y., Siddik, Z. H., Mills, G. B., and Claret, F. X. Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem, 278: 19245-19256, 2003.
61.Brenner, B., Koppenhoefer, U., Weinstock, C., Linderkamp, O., Lang, F., and Gulbins, E. Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem, 272: 22173-22181, 1997.
62.Jia, L., Yu, W., Wang, P., Li, J., Sanders, B. G., and Kline, K. Critical roles for JNK, c-Jun, and Fas/FasL-Signaling in vitamin E analog-induced apoptosis in human prostate cancer cells. Prostate, 68: 427-441, 2008.
63.Xie, P., Tian, C., An, L., Nie, J., Lu, K., Xing, G., Zhang, L., and He, F. Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes. Cell Signal, 2008.
64.Petak, I., Tillman, D. M., and Houghton, J. A. p53 dependence of Fas induction and acute apoptosis in response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines. Clin Cancer Res, 6: 4432-4441, 2000.
65.Orrenius, S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev, 39: 443-455, 2007.
66.Donnellan, R. and Chetty, R. Cyclin E in human cancers. Faseb J, 13: 773-780, 1999.
67.Zhang, Y. J., Jiang, W., Chen, C. J., Lee, C. S., Kahn, S. M., Santella, R. M., and Weinstein, I. B. Amplification and overexpression of cyclin D1 in human hepatocellular carcinoma. Biochem Biophys Res Commun, 196: 1010-1016, 1993.
68.Leach, F. S., Elledge, S. J., Sherr, C. J., Willson, J. K., Markowitz, S., Kinzler, K. W., and Vogelstein, B. Amplification of cyclin genes in colorectal carcinomas. Cancer Res, 53: 1986-1989, 1993.
69.Chen, H., Huang, Q., Dong, J., Zhai, D. Z., Wang, A. D., and Lan, Q. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo. BMC Cancer, 8: 29, 2008.
70.Deep, G., Singh, R. P., Agarwal, C., Kroll, D. J., and Agarwal, R. Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene, 25: 1053-1069, 2006.