( 您好!臺灣時間:2021/05/15 01:48
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):SNWE and SNPE -mediated human hepatocellular carcinoma cells apoptosis and mechanism research
指導教授(外文):Chau-Jong Wang
  • 被引用被引用:1
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
龍葵,為分布於全球的耕地、花園的野生植物。已被證實具有抗氧化、抗發炎、護肝作用以及抗腫瘤之醫學功能。在中國地區,龍葵及龍葵複方更是被廣泛用於惡性腫瘤後的治療。在本篇研究中證實了龍葵水萃物對多種癌細胞具有毒性,其中以肝癌細胞HepG2對龍葵水萃取物的處理最敏感,因此我們後續將以HepG2為研究之主軸。此外我們更進一步由龍葵水萃取物中分離出多酚成分,並由MTT分析結果得知龍葵多酚也會對HepG2細胞產生毒性,且所需的劑量較龍葵水萃物低。我們接著發現龍葵水萃及多酚會誘導細胞產生核濃染、DNA片段化以及細胞週期sudG1期增多的現象,判斷龍葵水萃及多酚萃取物對HepG2細胞的毒性是引發其邁向細胞亡。且其造成細胞凋亡的機轉是增加Fas表現而促進caspase-8的切割,活化後的caspase-8則進一步活化下游caspase-3以及Bid的切割,最後導致PARP失去作用而無法修復DNA,使細胞走向凋亡。此外,我們也發現低劑量之龍葵水萃及多酚萃取物會造成HepG2細胞週期停滯於G2/ M期。除了上述的細胞實驗外,我們也在裸鼠的動物實驗結果中發現,龍葵水萃及多酚萃取物能抑制肝癌細胞形成腫瘤。綜合細胞以及動物實驗的結果,我們推測龍葵具有治療肝癌的潛力。且其功效可能是來自於其中的多酚成份,期許將來在肝癌的治療,龍葵多酚可成為肝癌患者更好的選擇。

Solanum nigrum L. is worldwide weeds of arable land, gardens. It is believed to have anti-oxidative, anti-inflammatory, hepatoprotection and anti-tumor effects. In China, it has been used in traditional folk medicine to treat different cancers. In this study, we demonstrated that the water extract of Solanum nigrum L. (SNWE) expressed cytotoxic effects to many cancer cell lines. Among them, human hepatocellular carcinoma cells (HepG2) were the most susceptible to SNWE. We also isolated the polyphenolic compounds (SNPE) form SNWE and then used MTT assay to evaluate the cytotoxicity on the HepG2 cells. The results show that HepG2 cells were more susceptible to SNPE than SNWE.
Next, we observed the effects of SNWE and SNPE in inducing apoptosis in HepG2 cells by measuring the nuclear condensation, DNA fragmentation and increased the subG1 phase ratio in cell cycle. This effect of SNWE and SNPE in HepG2 cells might be mediated via increase the expression of Fas and cleaved-caspase 8, 3 protein. Furthermore, we treatment low dose of SNWE and SNPE to HepG2 cells and resulted in significant cell cycle arrest in G2/M phases. It might be due to decrease CDC25C protein expression.
Besides in vitro effects, the antitumor efficacy of SNWE and SNPE were also confirmed in human hepatocellular carcinoma xenografts in nude mice. Thus, our data indicate that SNWE and SNPE could play an active role in mediating the cell cycle arrest and apoptosis of human hepatocellular carcinoma cells and might be potential drugs for antitumor therapy.

縮寫表 4
中文摘要 5
英文摘要 6
序論 7
肝癌簡介 7
龍葵(Solanum nigrum L.)簡介 9
多酚( polyphenol )簡介 13
細胞週期(cell cycle)簡介 18
細胞凋亡(cell apoptosis)簡介 22
研究動機 29
研究架構 30
實驗材料與方法 30
實驗材料與方法 31
實驗方法 34
結果 47
討論 57
參考文獻 63
圖表 69

王泳 抗癌中藥的臨床應用. 中醫葯研究, 16: 20, 2000
徐榮源 C型肝炎與肝癌. 國防醫學, 27: 189-192, 1998.
1.Lee, C. C., Liu, J. Y., Lin, J. K., Chu, J. S., and Shew, J. Y. p53 point mutation enhanced by hepatic regeneration in aflatoxin B1-induced rat liver tumors and preneoplastic lesions. Cancer Lett, 125: 1-7, 1998.
2.Morgan, T. R., Mandayam, S., and Jamal, M. M. Alcohol and hepatocellular carcinoma. Gastroenterology, 127: S87-96, 2004.
3.Shieh, Y. S., Nguyen, C., Vocal, M. V., and Chu, H. W. Tumor-suppressor p53 gene in hepatitis C and B virus-associated human hepatocellular carcinoma. Int J Cancer, 54: 558-562, 1993.
4.El-Serag, H. B., Marrero, J. A., Rudolph, L., and Reddy, K. R. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology, 134: 1752-1763, 2008.
5.Sultana, S., Perwaiz, S., Iqbal, M., and Athar, M. Crude extracts of hepatoprotective plants, Solanum nigrum and Cichorium intybus inhibit free radical-mediated DNA damage. J Ethnopharmacol, 45: 189-192, 1995.
6.Prashanth Kumar, V., Shashidhara, S., Kumar, M. M., and Sridhara, B. Y. Cytoprotective role of Solanum nigrum against gentamicin-induced kidney cell (Vero cells) damage in vitro. Fitoterapia, 72: 481-486, 2001.
7.Lin, H. M., Tseng, H. C., Wang, C. J., Lin, J. J., Lo, C. W., and Chou, F. P. Hepatoprotective effects of Solanum nigrum Linn extract against CCl(4)-induced oxidative damage in rats. Chem Biol Interact, 171: 283-293, 2008.
8.Zakaria, Z. A., Gopalan, H. K., Zainal, H., Mohd Pojan, N. H., Morsid, N. A., Aris, A., and Sulaiman, M. R. Antinociceptive, anti-inflammatory and antipyretic effects of Solanum nigrum chloroform extract in animal models. Yakugaku Zasshi, 126: 1171-1178, 2006.
9.Moundipa, P. F. and Domngang, F. M. Effect of the leafy vegetable Solanum nigrum on the activities of some liver drug-metabolizing enzymes after aflatoxin B1 treatment in female rats. Br J Nutr, 65: 81-91, 1991.
10.Nadeem, M., Dandiya, P. C., Pasha, K. V., Imran, M., Balani, D. K., and Vohora, S. B. Hepatoprotective activity of Solanum nigrum fruits. Fitoterapia 68: 245-251, 1997.
11.Saijo, R., Murakami, K., Nohara, T., Tomimatsu, T., Sato, A., and Matsuoka, K. [Studies on the constituents of Solanum plants. II. On the constituents of the immature berries of Solanum nigrum L. (author''s transl)]. Yakugaku Zasshi, 102: 300-305, 1982.
12.Hu, K., Kobayashi, H., Dong, A., Jing, Y., Iwasaki, S., and Yao, X. Antineoplastic agents. III: Steroidal glycosides from Solanum nigrum. Planta Med, 65: 35-38, 1999.
13.Son YO, K. J., Lim JC, Chung Y, Chung GH, Lee JC. Ripe fruit of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem Toxicol., 41: 142-148, 2003.
14.Lee, S. J., Oh, P. S., Ko, J. H., Lim, K., and Lim, K. T. A 150-kDa glycoprotein isolated from Solanum nigrum L. has cytotoxic and apoptotic effects by inhibiting the effects of protein kinase C alpha, nuclear factor-kappa B and inducible nitric oxide in HCT-116 cells. Cancer Chemother Pharmacol, 54: 562-572, 2004.
15.Heo KS, L. S., Ko JH, Lim K, Lim KT. Glycoprotein isolated from Solanum nigrum L. inhibits the DNA-binding activities of NF-kappaB and AP-1, and increases the production of nitric oxide in TPA-stimulated MCF-7 cells. Toxicol In Vitro., 18: 755-763, 2004.
16.Lin, H. M., Tseng, H. C., Wang, C. J., Chyau, C. C., Liao, K. K., Peng, P. L., and Chou, F. P. Induction of autophagy and apoptosis by the extract of Solanum nigrum Linn in HepG2 cells. J Agric Food Chem, 55: 3620-3628, 2007.
17.JB, H. Methods in plant biochemistry.I:plant phenolics. London: Academic Press, 1989.
18.Scalbert, A., Morand, C., Manach, C., and Remesy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother, 56: 276-282, 2002.
19.Yoon, J. H. and Baek, S. J. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J, 46: 585-596, 2005.
20.Manach, C., Scalbert, A., Morand, C., Remesy, C., and Jimenez, L. Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79: 727-747, 2004.
21.Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem, 18: 427-442, 2007.
22.Hollman, P. C., van Trijp, J. M., Buysman, M. N., van der Gaag, M. S., Mengelers, M. J., de Vries, J. H., and Katan, M. B. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett, 418: 152-156, 1997.
23.Nigdikar, S. V., Williams, N. R., Griffin, B. A., and Howard, A. N. Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. Am J Clin Nutr, 68: 258-265, 1998.
24.Robak, J. and Gryglewski, R. J. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol, 37: 837-841, 1988.
25.Martin, A. R., Villegas, I., La Casa, C., and de la Lastra, C. A. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem Pharmacol, 67: 1399-1410, 2004.
26.Hibasami, H., Achiwa, Y., Fujikawa, T., and Komiya, T. Induction of programmed cell death (apoptosis) in human lymphoid leukemia cells by catechin compounds. Anticancer Res, 16: 1943-1946, 1996.
27.Kemberling, J. K., Hampton, J. A., Keck, R. W., Gomez, M. A., and Selman, S. H. Inhibition of bladder tumor growth by the green tea derivative epigallocatechin-3-gallate. J Urol, 170: 773-776, 2003.
28.Brusselmans, K., De Schrijver, E., Heyns, W., Verhoeven, G., and Swinnen, J. V. Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int J Cancer, 106: 856-862, 2003.
29.Horie, N., Hirabayashi, N., Takahashi, Y., Miyauchi, Y., Taguchi, H., and Takeishi, K. Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biol Pharm Bull, 28: 574-579, 2005.
30.Chen, C., Shen, G., Hebbar, V., Hu, R., Owuor, E. D., and Kong, A. N. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis, 24: 1369-1378, 2003.
31.Yang, G. Y., Liao, J., Kim, K., Yurkow, E. J., and Yang, C. S. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis, 19: 611-616, 1998.
32.Kuo, P. L. and Lin, C. C. Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci, 10: 219-227, 2003.
33.Johnson, D. G. and Walker, C. L. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39: 295-312, 1999.
34.MacLachlan, T. K., Sang, N., and Giordano, A. Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit Rev Eukaryot Gene Expr, 5: 127-156, 1995.
35.Mudryj, M., Devoto, S. H., Hiebert, S. W., Hunter, T., Pines, J., and Nevins, J. R. Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell, 65: 1243-1253, 1991.
36.Reed, S. I., Bailly, E., Dulic, V., Hengst, L., Resnitzky, D., and Slingerland, J. G1 control in mammalian cells. J Cell Sci Suppl, 18: 69-73, 1994.
37.Lobrich, M. and Jeggo, P. A. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer, 7: 861-869, 2007.
38.Takizawa, C. G. and Morgan, D. O. Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol, 12: 658-665, 2000.
39.Hutchins, J. R. and Clarke, P. R. Many fingers on the mitotic trigger: post-translational regulation of the Cdc25C phosphatase. Cell Cycle, 3: 41-45, 2004.
40.Hermeking, H., Lengauer, C., Polyak, K., He, T. C., Zhang, L., Thiagalingam, S., Kinzler, K. W., and Vogelstein, B. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell, 1: 3-11, 1997.
41.Kamesaki, H. Mechanisms involved in chemotherapy-induced apoptosis and their implications in cancer chemotherapy. Int J Hematol, 68: 29-43, 1998.
42.Kerr, J. F., Wyllie, A. H., and Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26: 239-257, 1972.
43.Williams, G. T. Apoptosis in the immune system. J Pathol, 173: 1-4, 1994.
44.Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science, 267: 1456-1462, 1995.
45.Saraste, A. and Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res, 45: 528-537, 2000.
46.Fumarola, C. and Guidotti, G. G. Stress-induced apoptosis: toward a symmetry with receptor-mediated cell death. Apoptosis, 9: 77-82, 2004.
47.Smith, C. A., Farrah, T., and Goodwin, R. G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell, 76: 959-962, 1994.
48.Bratton, S. B., MacFarlane, M., Cain, K., and Cohen, G. M. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res, 256: 27-33, 2000.
49.Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 15: 269-290, 1999.
50.Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86: 147-157, 1996.
51.Du, C., Fang, M., Li, Y., Li, L., and Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102: 33-42, 2000.
52.Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397: 441-446, 1999.
53.Li, L. Y., Luo, X., and Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 412: 95-99, 2001.
54.Donovan, M. and Cotter, T. G. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim Biophys Acta, 1644: 133-147, 2004.
55.Daugas, E., Nochy, D., Ravagnan, L., Loeffler, M., Susin, S. A., Zamzami, N., and Kroemer, G. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett, 476: 118-123, 2000.
56.Harris, M. H. and Thompson, C. B. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ, 7: 1182-1191, 2000.
57.Nunez, G., Benedict, M. A., Hu, Y., and Inohara, N. Caspases: the proteases of the apoptotic pathway. Oncogene, 17: 3237-3245, 1998.
58.Lewis, T. S., Shapiro, P. S., and Ahn, N. G. Signal transduction through MAP kinase cascades. Adv Cancer Res, 74: 49-139, 1998.
59.Johnson, G. L. and Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298: 1911-1912, 2002.
60.Mansouri, A., Ridgway, L. D., Korapati, A. L., Zhang, Q., Tian, L., Wang, Y., Siddik, Z. H., Mills, G. B., and Claret, F. X. Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem, 278: 19245-19256, 2003.
61.Brenner, B., Koppenhoefer, U., Weinstock, C., Linderkamp, O., Lang, F., and Gulbins, E. Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem, 272: 22173-22181, 1997.
62.Jia, L., Yu, W., Wang, P., Li, J., Sanders, B. G., and Kline, K. Critical roles for JNK, c-Jun, and Fas/FasL-Signaling in vitamin E analog-induced apoptosis in human prostate cancer cells. Prostate, 68: 427-441, 2008.
63.Xie, P., Tian, C., An, L., Nie, J., Lu, K., Xing, G., Zhang, L., and He, F. Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes. Cell Signal, 2008.
64.Petak, I., Tillman, D. M., and Houghton, J. A. p53 dependence of Fas induction and acute apoptosis in response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines. Clin Cancer Res, 6: 4432-4441, 2000.
65.Orrenius, S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev, 39: 443-455, 2007.
66.Donnellan, R. and Chetty, R. Cyclin E in human cancers. Faseb J, 13: 773-780, 1999.
67.Zhang, Y. J., Jiang, W., Chen, C. J., Lee, C. S., Kahn, S. M., Santella, R. M., and Weinstein, I. B. Amplification and overexpression of cyclin D1 in human hepatocellular carcinoma. Biochem Biophys Res Commun, 196: 1010-1016, 1993.
68.Leach, F. S., Elledge, S. J., Sherr, C. J., Willson, J. K., Markowitz, S., Kinzler, K. W., and Vogelstein, B. Amplification of cyclin genes in colorectal carcinomas. Cancer Res, 53: 1986-1989, 1993.
69.Chen, H., Huang, Q., Dong, J., Zhai, D. Z., Wang, A. D., and Lan, Q. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo. BMC Cancer, 8: 29, 2008.
70.Deep, G., Singh, R. P., Agarwal, C., Kroll, D. J., and Agarwal, R. Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene, 25: 1053-1069, 2006.

第一頁 上一頁 下一頁 最後一頁 top