(3.236.100.86) 您好!臺灣時間:2021/05/06 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭蓮如
研究生(外文):Lian - Ru
論文名稱:龍葵萃取物抑制動脈硬化形成機轉之探討
論文名稱(外文):Study of Solanum nigrum Extracts on the mecharisms of atherosclerosis
指導教授:李彗禎
指導教授(外文):Huei Jane Lee
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:81
相關次數:
  • 被引用被引用:1
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化型低密度脂蛋白在動脈粥狀硬化形成過程中起著十分重要的作用,可透過致血管內皮的損傷、促進泡沫細胞的形成及血管平滑肌細胞的增殖、影響多種原素促使血栓的形成,從而加速動脈粥狀硬化的發生和發展。在先前的研究中發現龍葵水萃物(Solanum nigrum water extract, SNWE)含有多酚化合物,並且有抗氧化的功效,因此本研究一開始以龍葵萃取物作為抗氧化劑,並以銅離子誘導LDL 氧化的模式進行體外抗氧化實驗。藉由ApoB 蛋白斷裂現象及LDL 蛋白表面電荷改變的程度與脂質過氧化產物MDA 及diene 的生成量來判斷抗氧化的活性。結果證明, SNWE與龍葵多酚萃取物 (Solanum nigrum polyphenol extract, SNPE)具有抑制氧化型低密度脂蛋白形成之能力並有dose-dependent 的現象;接下來進一步以高脂質飲食模式(膽固醇1.3%和猪油3%)誘導紐西蘭大白兔動脈硬化,結果發現SNWE具有降低動脈中動脈粥狀硬化的損傷面積,且在血清脂蛋白的表現中也發現SNWE可提高HDL(86%)、降低triglyceride(23%),進而去抑制動脈粥狀硬化之形成。最後在細胞實驗中,透過Wound healing 及 Gelatin Zymography 的實驗發現,SNWE與SNPE具有抑制由PDGF所誘導的細胞遷移作用。
由上述的結果顯示,SNWE以及SNPE具有抗氧化活性並且能抑制LDL 的氧化,而阻斷血管平滑肌細胞的遷移的機制,抑制動脈粥狀硬化的生成。綜合以上結果,我們認為龍葵萃取物具有預防動脈粥狀硬化的作用。

Oxidative LDL was known a major factor to cause atherosclersis. In previous study, Solanum nigrum water extract (SNWE) was proved to contain polyphenols and possess antioxidative ability. This study aimed to detect the effect of SNWE on atherosclerosis. Firstly, LDL was oxidized with copper ion accompanied with SNWEE or Solanum nigrum polyphenol extract (SNPE) treatment. In electrophoretic mobility, ApoB fragmentation, diene conjugation, and TBARS assay, the results showed that both SNWE and SNPE have the inhibitory effect on oxidative LDL in a dose-dependent manner. Second, in in vivo assay, New Zealand White (NZW) rabbits were fed with high fat diet (cholesterol 1.3% and lard oil 3%) to induce atherosclerosis. 0.25%, 0.5% or 1% of SNWE was co-treated to observe the effect on anti-atherosclerosis. The results showed that SNWE could reduce atherosclerosis lesion, lower the serum level of triglyceride to 23 % and increase the level of HDL-C to 86% significantly. Finally, wound healing and MMP activity assay were carried out to prove that SNWE and SNPE could suppress the smooth muscle cell migtation.
In conclusion, SNWE and SNPE possess strong antioxidative ability to inhibit LDL oxidation and further to inhibit atherosclerosis. One of the possible mechanisms was that SNWE SNPE could regulate signal pathway of cytoskeleton to suppress smooth mucsle cell migration.

壹、中文摘要.............................................1
貳、英文摘要.............................................3
參、緒論.................................................5
一、龍葵之背景介紹...................................................5
二、低密度脂蛋白與動脈粥狀硬化(atherosclerosis)........................7
三、動脈硬化之血管平滑肌遷移........................................13
肆、研究動機............................................16
伍、研究架構............................................ 17
陸、實驗方法...........................................18
一、龍葵萃取物抑制脂蛋白氧化作用....................................18
二、龍葵萃取物對動物體內動脈硬化作用影響............................21
三、龍葵萃取物對血管平滑肌細胞細胞內增生和遷移影響..................26
柒、實驗藥品與材料......................................30
捌、結果................................................33
一、龍葵萃取物抑制脂蛋白氧化作用............................ .......33
二、龍葵萃取物對動物體內動脈硬化作用影響............................36
三、龍葵萃取物對血管平滑肌細胞細胞內增生和遷移影響..................40
玖、討論................................................43
拾、參考文獻............................................48
拾壹、實驗結果圖表......................................54

1. 黃金池. 龍葵. 農業週刊 1985;11:26-7.
2. 楊再義. 台灣植物名彙. 天然書社有限公司 1982:1138.
3. 劉春安,彭明. 抗癌中草藥大辭典. 湖北科學技術出版社 1994;3:294-7.
4. Saijo R, Murakami K, Nohara T, Tomimatsu T, Sato A, Matsuoka K. [Studies on the constituents of Solanum plants. II. On the constituents of the immature berries of Solanum nigrum L. (author''s transl)]. Yakugaku Zasshi 1982;102(3):300-5.
5. Sultana S, Perwaiz S, Iqbal M, Athar M. Crude extracts of hepatoprotective plants, Solanum nigrum and Cichorium intybus inhibit free radical-mediated DNA damage. J Ethnopharmacol 1995;45(3):189-92.
6. Son YO, Kim J, Lim JC, Chung Y, Chung GH, Lee JC. Ripe fruit of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem Toxicol 2003;41(10):1421-8.
7. Lee SJ, Ko JH, Lim K, Lim KT. 150 kDa glycoprotein isolated from Solanum nigrum Linne enhances activities of detoxicant enzymes and lowers plasmic cholesterol in mouse. Pharmacol Res 2005;51(5):399-408.
8. Beisiegel U, Weber W, Ihrke G, Herz J, Stanley KK. The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 1989;341(6238):162-4.
9. Virella G, Lopes-Virella MF. Atherogenesis and the humoral immune response to modified lipoproteins. Atherosclerosis 2008.
10. Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 2002;8(11):1211-7.
11. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004;110(2):227-39.
12. Lusis AJ. Atherosclerosis. Nature 2000;407(6801):233-41.
13. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997;272(34):20963-6.
14. Harats D, Shaish A, George J, et al. Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2000;20(9):2100-5.
15. Heinecke JW. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 1998;141(1):1-15.
16. Napoli C, D''Armiento FP, Mancini FP, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997;100(11):2680-90.
17. Navab M, Berliner JA, Watson AD, et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 1996;16(7):831-42.
18. Bennett MR. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res 1999;41(2):361-8.
19. Colles SM, Irwin KC, Chisolm GM. Roles of multiple oxidized LDL lipids in cellular injury: dominance of 7 beta-hydroperoxycholesterol. J Lipid Res 1996;37(9):2018-28.
20. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320(14):915-24.
21. Halka AT, Turner NJ, Carter A, et al. The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovasc Pathol 2008;17(2):98-102.
22. Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998;2(2):275-81.
23. Sugden PH, Clerk A. Activation of the small GTP-binding protein Ras in the heart by hypertrophic agonists. Trends Cardiovasc Med 2000;10(1):1-8.
24. Sun Y, Weber KT. RAS and connective tissue in the heart. Int J Biochem Cell Biol 2003;35(6):919-31.
25. Nowak JM, Grzanka A, Zuryn A, Stepien A. [The Rho protein family and its role in the cellular cytoskeleton]. Postepy Hig Med Dosw (Online) 2008;62:110-7.
26. Kost B. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 2008;18(3):119-27.
27. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer 2002;2(2):133-42.
28. Bokoch GM, Der CJ. Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J 1993;7(9):750-9.
29. Downward J. The ras superfamily of small GTP-binding proteins. Trends Biochem Sci 1990;15(12):469-72.
30. Hall C, Sin WC, Teo M, et al. Alpha 2-chimerin, an SH2-containing GTPase-activating protein for the ras-related protein p21rac derived by alternate splicing of the human n-chimerin gene, is selectively expressed in brain regions and testes. Mol Cell Biol 1993;13(8):4986-98.
31. Chen CC, Hsu JD, Wang SF, et al. Hibiscus sabdariffa extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. J Agric Food Chem 2003;51(18):5472-7.
32. Saxty BA, Yadollahi-Farsani M, Kefalas P, Paul S, MacDermot J. Inhibition of chemotaxis in A7r5 rat smooth muscle cells by a novel panel of inhibitors. Br J Pharmacol 1998;125(1):152-8.
33. Galkina E, Ley K. Leukocyte influx in atherosclerosis. Curr Drug Targets 2007;8(12):1239-48.
34. Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 2005;96(3):327-36.
35. Moiseeva EP. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 2001;52(3):372-86.
36. Huang HC, Jan TR, Yeh SF. Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. Eur J Pharmacol 1992;221(2-3):381-4.
37. Huang HC, Wang HR, Hsieh LM. Antiproliferative effect of baicalein, a flavonoid from a Chinese herb, on vascular smooth muscle cell. Eur J Pharmacol 1994;251(1):91-3.
38. Chen HW, Huang HC. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol 1998;124(6):1029-40.
39. Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb 1991;11(1):2-14.
40. Barter P, Kastelein J, Nunn A, Hobbs R. High density lipoproteins (HDLs) and atherosclerosis; the unanswered questions. Atherosclerosis 2003;168(2):195-211.
41. Kato M, Inazu T, Kawai Y, et al. Amphiregulin is a potent mitogen for the vascular smooth muscle cell line, A7r5. Biochem Biophys Res Commun 2003;301(4):1109-15.
42. Zhang J, Fu M, Zhu X, et al. Peroxisome proliferator-activated receptor delta is up-regulated during vascular lesion formation and promotes post-confluent cell proliferation in vascular smooth muscle cells. J Biol Chem 2002;277(13):11505-12.
43. Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 1983;32(7):1141-8.
44. Takahama U. Inhibition of lipoxygenase dependent lipid peroxidation by quercetin: Mechanism of antioxidative function. Phytochemistry. Phytochemistry 1985; 24: 1443-6.
45. Katan MB. Flavonoids and heart disease. Am J Clin Nutr 1997;65(5):1542-3.
46. Raju K, Anbuganapathi G, Gokulakrishnan V, Rajkapoor B, Jayakar B, Manian S. Effect of dried fruits of Solanum nigrum LINN against CCl4-induced hepatic damage in rats. Biol Pharm Bull 2003;26(11):1618-9.
47. Lin HM, Tseng HC, Wang CJ, et al. Induction of autophagy and apoptosis by the extract of Solanum nigrum Linn in HepG2 cells. J Agric Food Chem 2007;55(9):3620-8.
48. Li PG, Xu JW, Ikeda K, et al. Caffeic acid inhibits vascular smooth muscle cell proliferation induced by angiotensin II in stroke-prone spontaneously hypertensive rats. Hypertens Res 2005;28(4):369-77.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔