(3.238.250.105) 您好!臺灣時間:2021/04/18 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周湘芸
研究生(外文):Hsiang-Yun
論文名稱:探討TGF-β-stimulatedclone-22基因對人類肺癌細胞生長及轉移的影響
論文名稱(外文):Investigate the growth and metastasis effects of TGF-β-stimulated clone-22 gene in human lung cancer cells
指導教授:吳文俊吳文俊引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學分子毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:109
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
TGF-β-stimulated clone-22 (TSC-22)是由TGF-β所誘導表現的基因,首先在老鼠造骨細胞MCT3T3E1中發現透過TGF-β的刺激會誘發TSC-22基因的表現。人類的TSC-22基因位於染色體13q14位置。文獻指出TSC-22能夠調控胚胎的發生,以及在部分癌細胞中,發現TSC-22基因的表現具有促進細胞凋亡(apoptosis)的趨勢,另外在人類唾液腺癌細胞中抑制TSC-22的表現能加速癌細胞的生長,因此推測TSC-22可能具有抑癌基因的潛力。本研究欲探討TSC-22基因在肺癌細胞中扮演何種角色。首先,由細胞計數和MTT assay結果得知,當我們在H358細胞株以shRNA干擾方式抑制TSC-22時會增加肺癌細胞的生長與細胞形成群落能力,而在CL1-5細胞株過度表現TSC-22基因則會降低肺癌細胞的生長及細胞形成群落能力。另外當抑制TSC-22表現時,會使得細胞轉型能力增強,相反的,過度表現TSC-22會抑制癌細胞的轉型能力。接著我們利用流式細胞儀分析TSC-22對細胞週期的影響,發現抑制TSC-22的表現會造成細胞週期之S期及G2/M期百分比上升。相反地,當過度表現TSC-22會造成細胞的細胞凋亡比例增加,並且在G1期、S期及G2/M期表現比例降低。此外利用短暫轉染計數將H226細胞株過度表現TSC-22亦會造成細胞凋亡比例增加的現象。進而以西方墨點法偵測細胞週期調控蛋白的表現,結果顯示將H358細胞株抑制TSC-22會明顯抑制p16的表現量,另一方面過度表現TSC-22造成CL1-5細胞株CDK1及CDK4表現量下降,並且p16的表現量有增加的趨勢,推測TSC-22的表現與p16基因之調控具有顯著相關性,並且由以上結果可以推論TSC-22在肺癌細胞株中可能扮演抑癌基因的角色。另一方面,當H358細胞抑制TSC-22後主要經由活化p38-MAPK路徑,而將CL1-5過度表現TSC-22會造成pAkt的表現量大幅降低,這些現象與TSC-22的抑癌功能之間的關係仍需再進一步釐清。接著我們繼續探討TSC-22對細胞轉移的影響,在細胞移行試驗及細胞侵潤試驗中,我們發現在CL1-0細胞株中抑制TSC-22的表現能促進細胞的移行能力,然而過度表現TSC-22會減弱CL1-5細胞株的侵潤能力。最後我們也利用動物模式觀察到抑制TSC-22時會促進腫瘤的生長能力。綜合以上結果,TSC-22基因在部份肺癌細胞株中可能扮演抑制癌細胞生長、群落形成及轉型能力的角色,但其詳細的作用機轉及影響路徑仍有待進一步探討。
TGF-β-stimulated clone-22(TSC-22) was originally reported as a TGF-β-inducible gene in mouse osteoblastic cells, MCT3T3E1. In 1992, TSC-22 was initially isolated from mouse osteoblastic cells as an immediate early response gene of TGF-β. The human TSC-22 gene was mapped to chromosome 13q14. Recently, several roles of TSC-22 have been proposed, including the regulation of embryogenesis, and the pro-apoptotic factor in several cancer cells. It has been reported that downregulation of TSC-22 enhances cell growth in the salivary gland cell line. Accumulated data suggest that TSC-22 is a potential tumor suppressor gene. In this research, we will investigate the role of TSC-22 gene in lung cancer cells. First of all, to address the function of endogenous TSC-22 in lung cancer cells, H358 and CL1-5 are known to express higher and lower levels of TSC-22, respectively. We established H358 and CL1-5 that stably expressed shRNA for TSC-22 and wt-TSC-22, respectively. Cell counting, MTT assay and colony formation assay data showed that suppression of TSC-22 in H358 increased cell growth and cell colony formation. On the other hand, overexpression of TSC-22 in CL1-5 would decrease cell growth and form smaller and looser colonies. According to anchorage-independent growth assay, reduced TSC-22 expression has better effect in cell transformation and enhanced TSC-22 expression has worse effect in cell transformation. We used flow cytometry to analyze cell cycle distribution in H358- and CL1-5-derived cell lines. Cells with suppressed TSC-22 gene would increase the cell population in S and G2/M phases. However, the percentage of sub-G1 phase was increased and the cell population in G1, S and G2//M phases was decreased in wild-type TSC-22 gene transfected cells. Moreover, the induction of sub-G1 population was also observed in the transient transfection of wild-type TSC-22 into H226 lung cancer cells. And then, we continually observed the expressions of cell cycle regulated proteins. The expression level of p16 was obviously decreased in shRNA TSC-22 transfected cells. On the contrary, overexpression of TSC-22 in CL1-5 could decrease the expression levels of CDK1 and CDK4. Besides, the protein level of p16 was elevated in wild-type TSC-22 gene transfected cells. According to our present results indicated that TSC-22 might acts as a tumor suppressor function in lung cancer. Next, we examined the expression of MAPKs and Akt by Western blot. We observed that the activities of MAPKs and Akt were also affected in TSC-22 regulated cell lines. The relationship between above phenomena and functions of TSC-22 need further study. In the experiments of metastasis, we want to determine if TSC-22 also affected the migratory and invasive capability of lung cancer cell lines. The increased migratory ability was observed in TSC-22 knockdown CL1-0 cells. But the decreased invasive ability was observed in TSC-22 overexpressed CL1-5 cells. The molecular mechanism involved in TSC-22 mediated cell migratory and invasive ability required further study. Finally, to assess whether TSC-22 plays a causal role in tumor growth, H358/vector control and H358/RNAi-4 cells were injected in subcutaneous into the right flank of SCID mice. Compared with vector control, suppression of TSC-22 may promote ability of tumor growth. In conclusion, our results suggest that TSC-22 may play a role in reducing cell proliferation, cell colony formation, cell transformation and metastasis in some lung cancer cell lines studied here. Nevertheless, the detailed mechanisms and pathways involved in tumor suppressor activity of TSC-22 are required for further investigation.
目 錄
壹、 中文摘要 1
貳、 英文摘要 3
參、 前言
一、肺癌流行病學及危險因子 5
二、肺癌的分類及成因 6
三、鑑定參與肺癌形成的基因 7
四、癌細胞的轉移 8
五、人類TSC-22基因 10
六、細胞週期調控蛋白 11
七、細胞凋亡反應與細胞凋亡之路徑 14
八、MAPKs與Akt的簡介 15
肆、 研究動機 17
伍、 實驗材料
1.酵素 18
2.商業套組 18
3.試藥 18
4.抗體 19
5.人類肺癌細胞株來源 20
6.載體來源 20
7.實驗動物 20
8.其他 21
9.儀器 21
陸、 實驗方法
1.質體DNA的萃取 (plasmid extract) 23
2.shRNA TSC-22干擾載體(vector)的構築 24
3.細胞RNA的萃取 26
4.利用去氧核醣核酸酶除去total RNA裡的染色體DNA 27
5.反轉錄反應 (reverse transcription; RT) 28
6.定量PCR (real-time PCR) 28
7.肺癌細胞培養 (cell culture) 28
8.轉染作用 (transfection) 30
9.Stable clones的篩選 (selection)步驟 31
10.西方墨點法 (Western blot) 31
11.3-(4,5-dimethylthiazol-2-yl)-25-diphenyltetrazolium bromide分析法 (MTT assay) 34
12.細胞計數生長試驗 (cell counting) 34
13.群落形成試驗 (colony formation) 35
14.軟培養基非附著性細胞生長試驗 (anchorage-independent growth assay) 35
15.細胞轉移試驗 (modified Boyden chamber) 36
16.流式細胞分析 (flow cytometry) 37
17.動物模式 38
18.統計分析 38
柒、 實驗結果
一、 利用real time PCR定量TSC-22基因在肺癌病人正常及腫瘤組
織之相對於18S rRNA的差異表現量 40
二、 觀察人類肺癌細胞株及人類正常肺臟纖維母細胞株內生性
TSC-22之表現 40
三、構築shRNA TSC-22干擾載體及具有表現TSC-22的載體 41
四、利用轉染技術改變人類肺癌細胞株內生性TSC-22之表現 42
五、觀察TSC-22的表現對於人類肺癌細胞株生長能力的影響 43
六、觀察TSC-22對細胞群落形成與細胞型態的影響 45
七、觀察TSC-22是否藉由影響細胞轉型(transformation)來改變肺癌細胞的生長能力 46
八、觀察TSC-22對於人類肺癌細胞株的細胞週期及細胞凋亡的影響 47
九、觀察TSC-22對於人類肺癌細胞株之細胞週期調控蛋白的影響 49
十、觀察TSC-22的表現對於人類肺癌細胞株內生性MAPKs與Akt之
活化的影響 50
十一、觀察TSC-22對於人類肺癌細胞株之移行能力及浸犯能力的影響 51
十二、利用動物模式觀察TSC-22對於人類肺癌細胞株生長能力的影響 53
捌、 討論 54
玖、 圖表說明
圖一、肺癌病人之正常及腫瘤組織之TSC-22相對於18S rRNA的差異
表現量 64
圖二、觀察人類肺癌細胞株及人類正常肺臟細胞株內生性TSC-22之表現 65
圖三、構築shRNA TSC-22干擾載體 66
圖四、利用轉染技術改變人類肺癌細胞株內生性TSC-22之表現 67
圖五、利用細胞計數分析TSC-22的表現對於人類肺癌細胞株生長能力的影響 69
圖六、利用MTT assay分析TSC-22的表現對於人類肺癌細胞株生長
能力的影響 72
圖七、觀察TSC-22對於人類肺癌細胞株PCNA及β-catenin表現量的影響以及觀察TSC-22的表現對於人類肺癌細胞株型態的影響 74
圖八、利用colony formation assay觀察TSC-22的表現對於人類肺癌細胞株細胞群落形成的影響 77
圖九、利用anchorage-independent growth assay觀察TSC-22的表現對於人類肺癌細胞株轉型能力的影響 80
圖十、利用流式細胞儀分析抑制TSC-22對於人類肺癌細胞株H358
細胞週期與細胞凋亡的影響 82
圖十一、利用流式細胞儀分析過度表現TSC-22對於人類肺癌細胞株
CL1-5細胞週期與細胞凋亡的影響 83
圖十二、利用流式細胞儀分析短暫轉染TSC-22對H226細胞株細胞週
期與細胞凋亡的影響 84
圖十三、觀察抑制TSC-22表現對於H358細胞株之細胞週期調控蛋白
的影響 86
圖十四、觀察過度表現TSC-22對於CL1-5細胞株之細胞週期調控蛋
白的影響 88
圖十五、觀察抑制TSC-22表現對於H358細胞株內生性MAPKs與Akt
之活化的影響 90
圖十六、觀察過度表現TSC-22對於CL1-5細胞株內生性MAPKs與
Akt之活化的影響 91
圖十七、觀察轉染shRNA TSC-22對於CL1-0細胞株移行能力的影響 92
圖十八、觀察轉染HA-TSC-22對於CL1-5細胞株浸潤能力的影響 93
圖十九、利用動物模式觀察抑制TSC-22的表現對於腫瘤生長的影響 94
拾、 附圖
附圖一、2007年全國主要死因死亡率 96
附圖二、2007年主要癌症死亡率 97
附圖三、細胞週期參考圖 98
附圖四、實驗結果流程圖 99
拾壹 、附表
附表一、細胞株的種類 100
附表二、引子序列表 101
拾貳 、文獻探討 102
Ackler S, Ahmad S, Tobias C, Johnson MD, Glazer RI (2002) Delayed mammary gland involution in MMTV-AKT1 transgenic mice. Oncogene 21(2): 198-206
Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature reviews 2(6): 420-430
Barker JM, Silvestri GA (2002) Lung cancer staging. Curr Opin Pulm Med 8(4): 287-293
Bellacosa A, Testa JR, Staal SP, Tsichlis PN (1991) A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254(5029): 274-277
Beresford SA, Davies MA, Gallick GE, Donato NJ (2001) Differential effects of phosphatidylinositol-3/Akt-kinase inhibition on apoptotic sensitization to cytokines in LNCaP and PCc-3 prostate cancer cells. J Interferon Cytokine Res 21(5): 313-322
Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85(6): 803-815
Boldt S, Weidle UH, Kolch W (2002) The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis 23(11): 1831-1838
Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11): 657-664
Bremnes RM, Veve R, Hirsch FR, Franklin WA (2002) The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36(2): 115-124
Brognard J, Clark AS, Ni Y, Dennis PA (2001) Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61(10): 3986-3997
Brugarolas J, Moberg K, Boyd SD, Taya Y, Jacks T, Lees JA (1999) Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after gamma-irradiation. Proc Natl Acad Sci U S A 96(3): 1002-1007
Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8): 563-572
Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, Chau YP, Yang PC, Kuo ML (2004a) Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst 96(5): 364-375
Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17(3): 590-603
Chang GC, Hsu SL, Tsai JR, Wu WJ, Chen CY, Sheu GT (2004b) Extracellular signal-regulated kinase activation and Bcl-2 downregulation mediate apoptosis after gemcitabine treatment partly via a p53-independent pathway. Eur J Pharmacol 502(3): 169-183
Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, Wu CW (1997) Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17(3): 353-360
Coffer PJ, Woodgett JR (1991) Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 201(2): 475-481
Corcoran NM, Costello AJ (2003) Interleukin-6: minor player or starring role in the development of hormone-refractory prostate cancer? BJU Int 91(6): 545-553
David-Pfeuty T (2006) The flexible evolutionary anchorage-dependent Pardee''s restriction point of mammalian cells: how its deregulation may lead to cancer. Biochim Biophys Acta 1765(1): 38-66
Davidson B, Konstantinovsky S, Kleinberg L, Nguyen MT, Bassarova A, Kvalheim G, Nesland JM, Reich R (2006) The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma. Gynecol Oncol 102(3): 453-461
Derynck R (1994) TGF-beta-receptor-mediated signaling. Trends Biochem Sci 19(12): 548-553
Dumont N, Arteaga CL (2003) Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3(6): 531-536
Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (2004) Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145(12): 5439-5447
Gachet Y, Tournier S, Millar JB, Hyams JS (2001) A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature 412(6844): 352-355
Gartel AL, Serfas MS, Tyner AL (1996) p21--negative regulator of the cell cycle. Proc Soc Exp Biol Med 213(2): 138-149
Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ, Luo Y, Han J (2002) MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295(5558): 1291-1294
Ger LP, Ding SL, Shen CY, Kao SJ, Yan HC (1990) [Survival of lung cancer patients of different histologic types]. J Formos Med Assoc 89(5): 407-412
Giatromanolaki A, Sivridis E, Stathopoulos GP, Fountzilas G, Kalofonos HP, Tsamandas A, Vrettou E, Scopa C, Polychronidis A, Simopoulos K, Koukourakis MI (2001) Bax protein expression in colorectal cancer: association with p53, bcl-2 and patterns of relapse. Anticancer Res 21(1A): 253-259
Gildea JJ, Harding MA, Seraj MJ, Gulding KM, Theodorescu D (2002) The role of Ral A in epidermal growth factor receptor-regulated cell motility. Cancer Res 62(4): 982-985
Giri D, Ozen M, Ittmann M (2001) Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol 159(6): 2159-2165
Glucksmann A (1965) Cell death in normal development. Archives de biologie 76(2): 419-437
Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics, 2001. CA Cancer J Clin 51(1): 15-36
Gupta RA, Sarraf P, Brockman JA, Shappell SB, Raftery LA, Willson TM, DuBois RN (2003) Peroxisome proliferator-activated receptor gamma and transforming growth factor-beta pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22. J Biol Chem 278(9): 7431-7438
Haitel A, Wiener HG, Migschitz B, Marberger M, Susani M (1997) Proliferating cell nuclear antigen and MIB-1. An alternative to classic prognostic indicators in renal cell carcinomas? Am J Clin Pathol 107(2): 229-235
Hamil KG, Hall SH (1994) Cloning of rat Sertoli cell follicle-stimulating hormone primary response complementary deoxyribonucleic acid: regulation of TSC-22 gene expression. Endocrinology 134(3): 1205-1212
Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98(6): 859-869
Hashiguchi A, Okabayashi K, Asashima M (2004) Role of TSC-22 during early embryogenesis in Xenopus laevis. Dev Growth Differ 46(6): 535-544
Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E, Weber LA, Gerthoffer WT (1999) A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 274(34): 24211-24219
Hino S, Kawamata H, Uchida D, Omotehara F, Miwa Y, Begum NM, Yoshida H, Fujimori T, Sato M (2000) Nuclear translocation of TSC-22 (TGF-beta-stimulated clone-22) concomitant with apoptosis: TSC-22 as a putative transcriptional regulator. Biochem Biophys Res Commun 278(3): 659-664
Horii N, Nishimura Y, Okuno Y, Kanamori S, Hiraoka M, Shimada Y, Imamura M (2001) Impact of neoadjuvant chemotherapy on Ki-67 and PCNA labeling indices for esophageal squamous cell carcinomas. Int J Radiat Oncol Biol Phys 49(2): 527-532
Jacks T, Weinberg RA (1998) The expanding role of cell cycle regulators. Science 280(5366): 1035-1036
Jay P, Ji JW, Marsollier C, Taviaux S, Berge-Lefranc JL, Berta P (1996) Cloning of the human homologue of the TGF beta-stimulated clone 22 gene. Biochem Biophys Res Commun 222(3): 821-826
Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376(6538): 313-320
Kania A, Salzberg A, Bhat M, D''Evelyn D, He Y, Kiss I, Bellen HJ (1995) P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster. Genetics 139(4): 1663-1678
Kavurma MM, Khachigian LM (2003) Sp1 inhibits proliferation and induces apoptosis in vascular smooth muscle cells by repressing p21WAF1/Cip1 transcription and cyclin D1-Cdk4-p21WAF1/Cip1 complex formation. J Biol Chem 278(35): 32537-32543
Kawa-uchi T, Nifuji A, Mataga N, Olson EN, Bonaventure J, Shinomiya K, Liu Y, Noda M (1998) Fibroblast growth factor downregulates expression of a basic helix-loop-helix-type transcription factor, scleraxis, in a chondrocyte-like cell line, TC6. J Cell Biochem 70(4): 468-477
Kawamata H, Nakashiro K, Uchida D, Hino S, Omotehara F, Yoshida H, Sato M (1998) Induction of TSC-22 by treatment with a new anti-cancer drug, vesnarinone, in a human salivary gland cancer cell. Br J Cancer 77(1): 71-78
Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 26(4): 239-257
Kester HA, van der Leede BM, van der Saag PT, van der Burg B (1997) Novel progesterone target genes identified by an improved differential display technique suggest that progestin-induced growth inhibition of breast cancer cells coincides with enhancement of differentiation. J Biol Chem 272(26): 16637-16643
Kim KY, Kim BC, Xu Z, Kim SJ (2004) Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J Biol Chem 279(28): 29478-29484
Knudsen ES, Wang JY (1997) Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol Cell Biol 17(10): 5771-5783
Kraus AC, Ferber I, Bachmann SO, Specht H, Wimmel A, Gross MW, Schlegel J, Suske G, Schuermann M (2002) In vitro chemo- and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways. Oncogene 21(57): 8683-8695
Krystal GW, Sulanke G, Litz J (2002) Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy. Mol Cancer Ther 1(11): 913-922
LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11(7): 847-862
Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114(Pt 16): 2903-2910
Lee JH, Rho SB, Park SY, Chun T (2008) Interaction between fortilin and transforming growth factor-beta stimulated clone-22 (TSC-22) prevents apoptosis via the destabilization of TSC-22. FEBS Lett 582(8): 1210-1218
Leslie K, Lang C, Devgan G, Azare J, Berishaj M, Gerald W, Kim YB, Paz K, Darnell JE, Albanese C, Sakamaki T, Pestell R, Bromberg J (2006) Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res 66(5): 2544-2552
Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1): 147-157
Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362(6423): 847-849
Lu Y, Kitaura J, Oki T, Komeno Y, Ozaki K, Kiyono M, Kumagai H, Nakajima H, Nosaka T, Aburatani H, Kitamura T (2007) Identification of TSC-22 as a potential tumor suppressor that is upregulated by Flt3-D835V but not Flt3-ITD. Leukemia 21(11): 2246-2257
Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4): 481-490
Meijer D, Jansen MP, Look MP, Ruigrok-Ritstier K, van Staveren IL, Sieuwerts AM, van Agthoven T, Foekens JA, Dorssers LC, Berns EM (2008) TSC22D1 and PSAP predict clinical outcome of tamoxifen treatment in patients with recurrent breast cancer. Breast Cancer Res Treat
Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5(9): 691-701
Nakashiro K, Kawamata H, Hino S, Uchida D, Miwa Y, Hamano H, Omotehara F, Yoshida H, Sato M (1998) Down-regulation of TSC-22 (transforming growth factor beta-stimulated clone 22) markedly enhances the growth of a human salivary gland cancer cell line in vitro and in vivo. Cancer Res 58(3): 549-555
Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14(5): 381-395
Nonn L, Peng L, Feldman D, Peehl DM (2006) Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention by vitamin D. Cancer Res 66(8): 4516-4524
Ogryzko VV, Wong P, Howard BH (1997) WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases. Mol Cell Biol 17(8): 4877-4882
Ohta S, Yanagihara K, Nagata K (1997) Mechanism of apoptotic cell death of human gastric carcinoma cells mediated by transforming growth factor beta. Biochem J 324 ( Pt 3): 777-782
Ohta Y, Fukazawa Y, Sato T, Suzuki A, Nishimura N, Iguchi T (1996) Effect of estrogen on ontogenic expression of progesterone and estrogen receptors in rat uterus. Zoolog Sci 13(1): 143-149
Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8): 948-958
Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15): 1837-1851
Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1): 59-66
Pomerance M, Quillard J, Chantoux F, Young J, Blondeau JP (2006) High-level expression, activation, and subcellular localization of p38-MAP kinase in thyroid neoplasms. J Pathol 209(3): 298-306
Porter LA, Donoghue DJ (2003) Cyclin B1 and CDK1: nuclear localization and upstream regulators. Prog Cell Cycle Res 5: 335-347
Puri A, Hug P, Jernigan K, Rose P, Blumenthal R (1999) Role of glycosphingolipids in HIV-1 entry: requirement of globotriosylceramide (Gb3) in CD4/CXCR4-dependent fusion. Biosci Rep 19(4): 317-325
Radhakrishnan SK, Feliciano CS, Najmabadi F, Haegebarth A, Kandel ES, Tyner AL, Gartel AL (2004) Constitutive expression of E2F-1 leads to p21-dependent cell cycle arrest in S phase of the cell cycle. Oncogene 23(23): 4173-4176

Rentsch CA, Cecchini MG, Schwaninger R, Germann M, Markwalder R, Heller M, van der Pluijm G, Thalmann GN, Wetterwald A (2006) Differential expression of TGFbeta-stimulated clone 22 in normal prostate and prostate cancer. Int J Cancer 118(4): 899-906
Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9(2): 180-186
Rousseau S, Houle F, Landry J, Huot J (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15(18): 2169-2177
Sakaguchi A, Matsumoto K, Hisamoto N (2004) Roles of MAP kinase cascades in Caenorhabditis elegans. J Biochem (Tokyo) 136(1): 7-11
Sasaki H, Nio M, Iwami D, Funaki N, Sano N, Ohi R, Sasano H (2001) E-cadherin, alpha-catenin and beta-catenin in biliary atresia: correlation with apoptosis and cell cycle. Pathol Int 51(12): 923-932
Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. The EMBO journal 17(6): 1675-1687
Shibanuma M, Kuroki T, Nose K (1992) Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor beta 1 and other growth factors. J Biol Chem 267(15): 10219-10224
Shih JY, Yang SC, Hong TM, Yuan A, Chen JJ, Yu CJ, Chang YL, Lee YC, Peck K, Wu CW, Yang PC (2001) Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst 93(18): 1392-1400
Shostak KO, Dmitrenko VV, Garifulin OM, Rozumenko VD, Khomenko OV, Zozulya YA, Zehetner G, Kavsan VM (2003) Downregulation of putative tumor suppressor gene TSC-22 in human brain tumors. J Surg Oncol 82(1): 57-64
Shostak KO, Dmitrenko VV, Vudmaska MI, Naidenov VG, Beletskii AV, Malisheva TA, Semenova VM, Zozulya YP, Demotes-Mainard J, Kavsan VM (2005) Patterns of expression of TSC-22 protein in astrocytic gliomas. Exp Oncol 27(4): 314-318
Sithanandam G, Fornwald LW, Fields J, Anderson LM (2005) Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene 24(11): 1847-1859
Sleeman MA, Murison JG, Strachan L, Kumble K, Glenn MP, McGrath A, Grierson A, Havukkala I, Tan PL, Watson JD (2000) Gene expression in rat dermal papilla cells: analysis of 2529 ESTs. Genomics 69(2): 214-224
Staal SP (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A 84(14): 5034-5037
Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y (2000) A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404(6773): 42-49
Thakkar H, Chen X, Tyan F, Gim S, Robinson H, Lee C, Pandey SK, Nwokorie C, Onwudiwe N, Srivastava RK (2001) Pro-survival function of Akt/protein kinase B in prostate cancer cells. Relationship with TRAIL resistance. J Biol Chem 276(42): 38361-38369
Ting AH, Jair KW, Suzuki H, Yen RW, Baylin SB, Schuebel KE (2004) CpG island hypermethylation is maintained in human colorectal cancer cells after RNAi-mediated depletion of DNMT1. Nat Genet 36(6): 582-584
Torres M, Forman HJ (2003) Redox signaling and the MAP kinase pathways. Biofactors 17(1-4): 287-296
Travis LB, Curtis RE, Bennett WP, Hankey BF, Travis WD, Boice JD (1995) Lung cancer after Hodgkin''s disease. J Natl Cancer Inst 87(17): 1324-1327
Trenkle T, Welsh J, Jung B, Mathieu-Daude F, McClelland M (1998) Non-stoichiometric reduced complexity probes for cDNA arrays. Nucleic Acids Res 26(17): 3883-3891
Uchida D, Kawamata H, Omotehara F, Miwa Y, Hino S, Begum NM, Yoshida H, Sato M (2000) Over-expression of TSC-22 (TGF-beta stimulated clone-22) markedly enhances 5-fluorouracil-induced apoptosis in a human salivary gland cancer cell line. Lab Invest 80(6): 955-963
Walworth NC (2000) Cell-cycle checkpoint kinases: checking in on the cell cycle. Curr Opin Cell Biol 12(6): 697-704
Wang LH (2004) Molecular signaling regulating anchorage-independent growth of cancer cells. Mt Sinai J Med 71(6): 361-367
Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60(9): 2504-2511
Xiong Y (1996) Why are there so many CDK inhibitors? Biochim Biophys Acta 1288(1): 01-05
Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366(6456): 701-704
Xu L, Chen S, Bergan RC (2006) MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 25(21): 2987-2998
Yamashiro S, Matsumura F (1991) Mitosis-specific phosphorylation of caldesmon: possible molecular mechanism of cell rounding during mitosis. Bioessays 13(11): 563-568
Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811): 433-439
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔