|
1.http://sowf.moi.gov.tw/17/94/index.htm 2.Geldmacher DS, Whitehouse PJ. “Evaluation of dementia,” N Engl J Med, 335:330-336, 1996. 3.Dobbs, A. R., & Rule, B. G. “Adult age differences in working memory,” Psychology and Aging, 4:500-503, 1990. 4.Hultsch, D. F. “Adult age differences in free classification and free recall,” Developmental Psychology, 4: 338-342, 1971. 5.Plude, D. J., & Hoyer, W. J. “Adult age differences in visual search as a function of stimulus mapping and processing load,” J. Gerontol., 36: 598-604, 1981. 6.Schonfield, A. D. E., & Robertson, B. “A. Memory storage and aging. Can,” J. Psychol., 20:228-236, 1966. 7.Blatter DD, Bigler ED, Gale SD, et al. “Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life,” Am J Neuroradiol 16: 241-51, 1995. 8.Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. “Age-related total gray matter and white matter changes in normal adult brain. Part II: quantitative magnetization transfer ratio histogram analysis,” Am J Neuroradiol 23: 1334-41, 2002. 9.Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. “A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood,” Arch Neurol 51: 874-87, 1994. 10.Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. “A voxel-based morphometric study of ageing in 465 normal adult human brains,” Neuroimage 14: 21-36, 2001. 11.Jernigan TL, Archibald SL, Fennema-Notestine C, et al. “Effects of age on tissues and regions of the cerebrum and cerebellum,” Neurobiol Aging 22: 581-94, 2001. 12.Guttmann CR, Jolesz FA, Kikinis R, et al. “White matter changes with normal aging,” Neurology 50: 972-8, 1998. 13.Clarke, L.P., Velthuizen, R.P, Camacho, M.A., Heine, J.J., Vaidyanathan, M., Hall, L.O., Thatcher, R.W., Silbiger, M.L., “MRI segmentation: methods and applications,” Magnetic Resonance Imaging, 13(3):343-368, 1995. 14.Lange, N., Strother, S. C., Anderson, J. R., Nielsen, F. A., Holmes, A. P., Kolenda, T., Savoy, R., Hansen, L. K., “Plurality and resemblance in fMRI data analysis,” NeuroImage, 10:282–203, 1999. 15.Kobashi, S., Kamiura, N., Hata, Y., Miyawaki F., “Volume-quantization-based neural network approach to 3D MR angiography image segmentation,” Image and Vision Computing, 19:185–193, 2001. 16.Hubbard BM, Anderson JM. “A quantitative study of cerebral atrophy in old age and senile dementia,” Journal of the Neurological Sciences, 50:135– 45, 1981. 17.Dekaban AS, Sadowsky D. “Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights,” Ann Neurol, 4:345–56, 1978. 18.Willerman, L., Loehlin, J.C., Horn, J.M.. “A 10-year follow-up of adoptees whose biological mothers had differed greatly in IQ,” Behav. Genet. 20 (6), 754, 1990. 19.Yeo, R.A., Turkheimer, E., Raz, N., Bigler, E.D. “Volumetric asymmetries of the human-brain-intellectual correlates,” Brain Cogn. 6 (1), 15– 23, 1987. 20.Bomans, M., Hohne, K.H., Tiede, U., Riemer, M. “3-D segmentation of MR images of the head for 3-D display,” IEEE Trans. Med. Imaging 9: 177-183, 1990. 21.Suzuki, H., Toriwaki, J.-I. “Automatic segmentation of head MRI images by knowledge guided thresholding,” Comput. Med. Imaging Graph. 15:233-240, 1991. 22.Bezdek, J.C., Hall, L.O., Clarke, L.P. “Review of MR image segmentation techniques using pattern recognition,” Med. Phys. 20: 1033-1048, 1993. 23.Clarke, L.P., Velthuizen, R.P., Phuphanich, S., Schellenberg, J.D., Arrington, J.A., Silbiger, M. “MRI: Stability of three supervised segmentation techniques,” Magn. Reson. Imaging 11: 95-106, 1993. 24.Kohn, M.I., Tanna, N.K., Herman, G.T., Resnick, S.M., Mozley, P.D., Gur, R.E., Alavi, A., Zimmerman, R.A., Gur, R.C. “Analysis of brain and cerebrospinal fluid volumes with MR imaging – Part I. Methods, reliability, and validation,” Radiology 178: 115-122, 1991. 25.Peck, D.J., Windham, J.P., Soltanian-Zadeh, H., Roebuck, J.R. “A fast and accurate algorithm for volume determination in MRI,” Med. Phys. 19:599-605, 1992. 26.Gerig, G., Martin, J., Kikinis, R., Kubler, O., Shenton, M., Jolesz, F.A., “Unsupervised tissue type segmentation of 3D dual-echo MR head data,” Image Vision Comput. 10: 349-360, 1992. 27.Brandt, M.E., Bohan, T.P., Kramer, L.A., Fletcher, J.M. “Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images,” Comput. Med. Imaging Graph. 18: 25-34, 1994. 28.Hyvarinen, A., Karhunen, J., and Oja, E. Independent Component Analysis, John Wiley & Sons, 2001. 29.Kao, Y.H., Guo, W.Y., Wu, Y.T., Liu, K.C., Chai, W.Y., Lin, C.Y., Hwang, Y.H., Liou, A.J.K., Wu, H.M., Cheng, H.C., Yeh, T.C., Hsieh, J.C., and Teng, M.M.H. “Hemodynamic Segmentation of MR Brain Perfusion Images Using Independent Component Analysis, Thresholding, and Bayesian Estimation,” Magnetic Resonance in Medicine, 49:885–894, 2003 30.McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., Sejnowski, T.J., “Analysis of fMRI data by blind separation into independent spatial component,” Hum. Brain Mapp., 6: 160-188, 1998. 31.Calhoun, V.D., Adalı, T., Pearlson, G.D., Zijl, P.C.M., and Pekar, J.J. “Independent Component Analysis of fMRI Data in the Complex Domain,” Magnetic Resonance in Medicine, 48:180–192, 2002. 32.Vince D. Calhoun, Tulay AdalV, James J. Pekar, “A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks,” Magnetic Resonance Imaging, 22: 1181–1191, 2004. 33.Vigario, R., Sarela, J., Jousmaki, V., Hamalainen, M., and Oja, E. “Independent component approach to the analysis of EEG and MEG recordings,” IEEE Trans. Biomed. Eng., 47: 589– 593, 2000. 34.Jung, T.P., Makeig, S., Stensmo, M., Sejnowski, T.J. “Estimating alertness from the EEG power spectrum,” IEEE Trans. Biomed. Eng., 44: 60– 66, 1997. 35.Vapnik, V. The Nature of Statistical Learning Theory. Springer, N.Y., 1995. 36.Kim, K. I., Jung, K., Park, S. H., and Kim. H. J. “Support Vector Machines for Texture Classification,” IEEE Trans. Pattern Anal. Mach. Intell., 24: 1542-1550, 2002. 37.Tefas, A., Kotropoulos, C., and Pitas, I. “Using Support Vector Machines to Enhance the Performance of Elastic Graph Matching for Frontal Face Authentication,” IEEE Trans. Pattern Anal. Mach. Intell., 23: 735-746, 2001. 38.Wei, L., Yang, Y., Nishikawa, R. M., and Jiang, Y. “A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications,” IEEE Trans. Medical Imaging, 24(3): 371-380, 2005. 39.Miranda, J. M., Bokde, A. L.W., Born, C., Hampel, H., and Stetter, M. “Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data,” NeuroImage 28: 980 – 995, 2005. 40.Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., and Davatzikos, C. “Morphological classification of brains via high-dimensional shape transformations and machine learning methods,” NeuroImage 21: 46– 57, 2004. 41.Güler, İ., Übeyli, E. D. “Multiclass Support Vector Machines for EEG Signals Classification,” IEEE Transactions on Information Technology in Biomedicine, Accepted for future publication, 2006. 42.http://www.bic.mni.mcgill.ca/brainweb 43.Nakai, T., Muraki, S., Bagarinao, E., Miki, Y., Takehara, Y., Matsuo, K., Kato, C., Sakahara, H., and Isoda, H. “Application of independent component analysis to magnetic resonance imaging for enhancing the contrast of gray and white matter,” NeuroImage, 21: 251–260, 2004. 44.Hyvarinen, A., and Oja, E. “A fast fixed-point for independent component analysis,” Neural Computation, 9(7): 1483-1492, 1997. 45.Vapnik, V. Statistical Learning Theory. Wiley, 1998. 46.Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice-Hall, 1999, Chapter 6. 47.Valdes-Cristerna, R., Banuelos, V. M., Yanez-Suarez, O. “Coupling of radial basis networks and active contour model for multispectral brain MR images,” IEEE Trans. Biomedical Eng., 51(3): 459-470, 2004. 48.Bedell, B. J., Narayana, P. A. “Volumetric Analysis of White Matter, Gray Matter, and CSF Using Fractional Volume Analysis,” Magnetic Resonance in Medicine, 39:961–969, 1998.
|