跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/13 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏永昌
研究生(外文):Yung-Chang
論文名稱:台灣地區年輕型青光眼病人的致病基因之研究
論文名稱(外文):Study of Glaucoma Genes in Juvenile onset Open Angle Glaucoma in Taiwan
指導教授:李宣佑李宣佑引用關係周明智周明智引用關係
學位類別:博士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:84
相關次數:
  • 被引用被引用:0
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
青光眼為眼科第二大眼病,第一大不易治療的眼科疾病。因此在WHO.2020.世界視力照護宣導中指出,青光眼是需大力防治的疾病之一。在過去幾年造成青光眼的相關基因逐漸被發現,到目前為止至少發現有14個以上相關的基因造成隅角開放性青光眼,因此青光眼可以被認為不是一個單一基因的疾病。而在不同種族也有不同的發現,在台灣地區醫療已達一定水準之區域,仍少有相關基因之探討。本篇論文乃以先驅者之方式將年輕型且具有遺傳特性(非外傷,手術或其他原因引起)的特殊分類 -- 年輕型隅角開放性青光眼病人,以最具代表性的隅角開放型青光眼(POAG)基因,MYOCILIN (MYOC)和OPTINEURIN (OPTN)做為本研究的分析基因。我們利用聚合酵素連鎖反應(PCR)、基因定序和統計學的方法找尋在這兩個基因可能成為致病之變異。在48位年輕型隅角開放性青光眼和100位正常人的MYOC基因中,我們發現8個多型性(polymorphisms)。另外我們也發現在6位年輕型隅角開放性青光眼患者中帶有4個在MYOC基因的突變點--- c.136C>T (Arg46Stop)、c.158T>C(Val53Ala)、c.604+228A>T 和c.1515+73G>C---所佔的比例為12.5% (6/48)。在OPTN基因篩檢分析中我們並沒有找到任何突變點。然而我們發現了15個多型性(polymorphisms),包括7個先前被報告過和8個是在本研究中新發現的。其中c.-233+25C>G的變異在病人和正常人間所佔有的比例經統計分析是有明顯區別,且在正常人所佔的比例較高,因此我們認為這個變異點可能具有防止青光眼形成的保護功能。另外要進一步分析青光眼基因時就需要建立青光眼的動物模型,我們的結果顯示大鼠的眼壓正常為21-24 毫米汞柱,在給予類固醇藥物第2周後即可開始看到眼壓開始升高,眼壓上升到28-31毫米汞柱, 持續給藥最高可達32±2.5毫米汞柱。進一步觀察基因表現,我們發現MYOC和OPTN基因的表現都有受到眼壓升高影響而降低。綜合以上研究結果,我們已建立台灣地區年輕型隅角開放性青光眼患者的MYOC和OPTN基因多型性和突變的資料庫,除了在人類年輕型隅角開放性青光眼患者之基因探討外,本研究報告中,我們也建立以類固醇點用於大鼠眼部誘發高眼壓的動物模型,此動物模型將可適用在後續小樑組織分析和青光眼致病基因的研究中使用。這些完整的資料、分子診斷技術和動物模型的發展,可以讓我們對於年輕型隅角開放性青光眼的成因有更深入的瞭解。

Glaucoma is the second cause of blindness all over the world. There will be 200 million people suffered from blindness in 2020. Glaucoma is a complex disease with both genetic and environmental factorial contributing. The genetic components are illustrated by the factor that if relative have the disease, you have a greater risk of getting affected yourself. Early detection and diagnosis is vital to stop the progression of the disease. To be able to do that, it is essential to gain more knowledge about the molecular genetic aspects of the disease. However, in Taiwan, the data of the related genes are still insufficient; therefore, further research is worthy to conduct. The overall goal of this thesis is to establish the genetic basis for the screening, diagnosis, and pathogenesis studies of MYOC and OPTN genes of juvenile-onset glaucoma (JOAG) in Taiwan. We also conduct the pilot study of animal model of ocular hypertension suitable for glaucoma genes mechanism evaluation. In this study, we aim to determine the mutation sites of the MYOC and OPTN genes by using comparative genetic analysis between genomic DNA from normal individuals and JOAG patients; and to understand etiology of MYOC and OPTN genes mutants in JOAG. The analysis revealed four MYOC mutations and six polymorphisms. The prevalence of MYOC gene mutations in this study was 12.5% (6/48). Our results indicate that the c.136C>T (Arg46Stop), c.158T>C (Val53Ala), c.604+228A>T, and c.1515+73G>C mutations of MYOC may be associated with JOAG. Analysis of OPTN gene, fifteen variants of OPTN were found in the study. Seven of the variants have been reported and eight were novel. All of the sequence changes were found in patients with JOAG and in the normal controls except for variant c.-233+25C>G, which was found only in the control group. We suggested the variant c.-233+25C>G may be protective against glaucoma in Taiwanese. In addition, our data indicate that none of the mutations in OPTN are associated with JOAG. In animal model study, our results found the average IOP in normal eyes were 21-24 mmHg. Steroid-treated eyes showed significantly higher IOP than control eyes from 2 to 10 weeks. The average IOP in treated eyes were elevated to 28-31 mmHg after 2 weeks. The higher IOP can be 32±2.5 mmHg. In addition, we found both MYOC and OPTN gene expression significantly decrease than control eyes at the end of the 10-week using RT-PCR analysis. Especially, MYOC gene express significantly decrease more than OPTN gene. In summary, our study provides information for understanding the importance of genetic factors in JOAG of Taiwanese and that may be of use in the improvement of genetic diagnosis and genetic counseling for the families of JOAG in Taiwan. In addition, the animal trial with topical medication produces persistent IOP elevation in rat eyes and may be a promising experimental model for the investigation of the biological mechanisms of glaucomatous optic neuropathy.

致謝(Acknowledgements) i
縮寫表(Abbreviation) iii
中文摘要 1
英文摘要 3
前言(Introduction) 5
青光眼簡介 5
年輕型青光眼簡介 7
MYOCILIN (MYOC)基因簡介 10
OPTINCIN (OPTN) 基因簡介 11
WDR36 基因簡介 11
青光眼動物模型簡介 12
材料與方法 (Material and Methods) 16
結果(Results) 25
MYOC基因突變之篩檢 25
OPTN基因突變之篩檢 27
青光眼動物模型的建立 29
討論(Discussion) 31
未來研究方向(Future works) 38
圖(Figures) 40
表(Tables) 50
參考文獻(References) 62
附錄(Appendix) 77
I附圖 77
II實驗步驟 78
III實驗藥物 82
IV實驗儀器 84

附件:發表文章
一. Yung-Chang Yen, Jiann-Jou Yang, Ming-Chih Chou,Shuan-Yow Li : Identification of mutations in the myocilin (MYOC) gene in Taiwanese patients with juvenile-onset open-angle glaucoma ; Molecular Vision 2007; 13:1627-34
二. Yung-Chang Yen,Jiann-Jou Yang, Ming-Chih Chou , Shuan-Yow Li : Absence of optineurin (OPTN) gene mutations in Taiwanese patients with juvenile-onset open-angle glaucoma ; Molecular Vision 2008; 14:487-494


Aihara M, Lindsey JD, Weinreb RN. Aqueous humor dynamics in mice. Invest Ophthalmol Vis Sci 2003; 44: 5168–5173.
Alward WL, Kwon YH, Kawase K, Craig JE, Hayreh SS, Johnson AT, Khanna CL, Yamamoto T, Mackey DA, Roos BR, Affatigato LM, Sheffield VC, Stone EM. Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma. Am J Ophthalmol 2003; 136: 904–10.
Anderson MG, Smith RS, Savinova OV, et al. Genetic modification of glaucoma associated phenotypes between AKXD-28/Ty and DBA/2J mice. BMC Genet 2001;2:1.
Aung T, Yong VH, Chew PT, Seah SK, Gazzard G, Foster PJ, Vithana EN. Molecular analysis of the myocilin gene in Chinese subjects with chronic primary-angle closure glaucoma. Invest Ophthalmol Vis Sci 2005; 46:1303-1306.
Ayala-Lugo RM, Pawar H, Reed DM, Lichter PR, Moroi SE, Page M, Eadie J, Azocar V, Maul E, Ntim-Amponsah C, Bromley W, Obeng-Nyarkoh E, Johnson AT, Kijek TG, Downs CA, Johnson JM, Perez-Grossmann RA, Guevara-Fujita ML, Fujita R, Wallace MR, Richards JE. Variation in optineurin (OPTN) allele frequencies between and within populations. Mol Vis 2007; 13:151-63.
Becker B. Intraocular pressure response to topical corticosteroids. Invest Ophthalmol 1965;4:198-205.
Bruttini M, Longo I, Frezzotti P, Ciappetta R, Randazzo A, Orzalesi N, Fumagalli E, Caporossi A, Frezzotti R, Renieri A Mutations in the myocilin gene in families with primary open-angle glaucoma and juvenile open-angle glaucoma. Arch Ophthalmol 2003;121:1034-1038.
Cohan BE, Bohr DF. Measurement of intraocular pressure in awake mice. Invest Ophthalmol Vis Sci 2001; 42: 2560–2562.
Congdon N, O''Colmain B, Klaver CCW, Klein R, Muñoz B, Friedman DS, Kempen J, Taylor HR, Mitchell P, Hyman L. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 2004;122:477–85.
Colomb E, Nguyen TD, Bechetoille A, Dascotte JC, Valtot F, Brezin AP, Berkani M, Copin B, Gomez L, Polansky JR, Garchon HJ. Association of a single nucleotide polymorphism in the TIGR/MYOCILIN gene promoter with the severity of primary open-angle glaucoma. Clin Genet 2001;60(3):220-25.
Craig JE, Hewitt AW, Dimasi DP, Howell N, Toomes C, Cohn AC, Mackey DA. The role of the Met98Lys optineurin variant in inherited optic nerve diseases. Br J Ophthalmol 2006; 90: 1420-24.
Crowston JG, Aihara M, Lindsey JD, Weinreb RN. Effect of latanoprost on outflow facility in the mouse. Invest Ophthalmol Vis Sci 2004; 45: 2240–2245.
Danias J, Gross RL, Anias J, Kontiola AI, Filippopoulos T, Mittag T. Method for the noninvasive measurement of intraocular pressure in mice. Invest Ophthalmol Vis Sci 2003; 44: 1138–1141
Duke-Elder S, Dobree JH. The formation of avascular connective-tissue bands in proliferative diabetic retinopathy. Bibl Ophthalmol 1968;76:133-138
Fan BJ, Wang DY, Fan DS, Tam PO, Lam DS, Tham CC, Lam CY, Lau TC, Pang CP, SNPs and interaction analyses of myocilin, optineurin, and apolipoprotein E in primary open angle glaucoma patients. Mol Vis 2005; 11:625-631.
Fingert JH, Heon E, Liebmann JM, Yamamoto T, Craig JE, Rait J, Kawase K, Hoh ST, Buys YM, Dickinson J, Hockey RR, Williams-Lyn D, Trope G, Kitazawa Y, Ritch R, Mackey DA, Alward WL, Sheffield VC, Stone EM. Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet 1999; 8:899-905.
Fingert JH, Ying L, Swiderski RE, Nystuen AM, Arbour NC, Alward WL, Sheffield VC, Stone EM. Characterization and comparison of the human and mouse GLC1A glaucoma genes. Genome Res 1998;8:377-384.
Fingert JH, Alward WL, Kwon YH, Shankar SP, Andorf JL, Mackey DA, Sheffield VC, Stone EM. No association between variations in the WDR36 gene and primary open-angle glaucoma. Arch Ophthalmol 2007;125(3):434-436.
Forsman E, Lemmela S, Varilo T, Kristo P, Forsius H, Sankila EM, Jarvela. The role of TIGR and OPTN in Finnish glaucoma families: a clinical and molecular genetic study. Mol Vis 2003; 9:217-22.
Francois J. Cortisone ettension oculaire. Ann Oculist 1954;187:805.
Friedman DS, Wolfs RCW, O''Colmain BJ, Klein BE, Taylor HR, West S, Leske MC, Mitchell P, Congdon N, Kempen J, Tielsch J. Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 2004;122:532–8.
Furuyoshi N, Furuyoshi M, Futa R, Gottanka J, Lutjen-Drecoll E. Ultrastructural changes in the trabecular meshwork of juvenile glaucoma. Ophthalmologica 1997; 211(3):140-146.
Fuse N, Takahashi K, Akiyama H, Nakazawa T, Seimiya M, Kuwahara S, Tamai M. Molecular genetic analysis of optineurin gene for primary open-angle and normal tension glaucoma in the Japanese population. J Glaucoma 2004; 13:299-303.
Gaasterland D, Kupfer C. Experimental glaucoma in the rhesus monkey. Invest Ophthalmol 1974;13:455-457.
Gelatt KN, Brooks DE, Samuelson DA. Comparative glaucomatology, II: the experimental glaucomas. J Glaucoma 1998;7:282-294.
Gong G, Kosoko-Lasaki O, Haynatzki GR, Wilson MR. Genetic dissection of myocilin glaucoma. Hum Mol Gnent 2004;13: R91-R102.
Gross RL, Ji J, Chang P, Pennesi ME, Yang Z, Zhang J, Wu SMA. Mouse model of elevated intraocular pressure: retina and optic nerve findings. Trans Am Ophthalmol Soc 2003; 101: 163–171.
Hare W, Ton H, Woldemussie E, et al. Electrophysiological and histological measures of retinal injury in chronic ocular hypertensive monkeys. Eur J Ophthalmol 1999;(9 Suppl1):S30-S33.
Hauser MA, Allingham RR, Linkroum K, Wang J, LaRocque-Abramson K, Figueiredo D, Santiago-Turla C, del Bono EA, Haines JL, Pericak-Vance MA, Wiggs JL. Distribution of WDR36 DNA sequence variants in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2006;47:2542-2546.
Hewitt AW, Dimasi DP, Mackey DA, Craig JE. A glaucoma case-control study of the WDR36 gene D658G sequence variant. Am J Ophthalmol 2006;142:324-325.
Hsu WM, Cheng CY, Liu JH, Tsai SY, Chou P. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan: the Shihpai Eye Study.
Ophthalmology 2004; 111: 62-9.
Ishikawa K, Funayama T, Ohtake Y, Tanino T, Kurosaka D, Suzuki K, Ideta H, Fujimaki T, Tanihara H, Asaoka R, Naoi N, Yasuda N, Iwata T, Mashima Y. Novel MYOC gene mutation, Phe369Leu, in Japanese patients with primary open-angle glaucoma detected by denaturing high-performance liquid chromatography. J Glaucoma 2004; 13:466-471.
Izumi K, Mashima Y, Obazawa M, Ohtake Y, Tanino T, Miyata H, Zhang Q, Oguchi Y, Tanaka Y, Iwata T. Variants of the myocilin gene in Japanese patients with normal-tension glaucoma. Ophthalmic Res 2003; 35:345-350.
Jia L, Cepurna WO, Johnson EC, Morrison JC. Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction. Invest Ophthalmol Vis Sci 2000;41:3415–3419.
Johnson AT, Drack AV, Kwitek AE, Cannon RL, Stone EM, Alward WLM. Clinical features and linkage analysis of a family with autosomal dominant juvenile glaucoma. Ophthalmol 1993; 100: 524-529.
John SW, Hagaman JR, MacTaggart TE, Peng L, Smithes O. Intraocular pressure in inbred mouse strains. Invest Ophthalmol Vis Sci 1997:38:249–253.
John SW, Smith RS, Savinova OV, et al. Essential iris atrophy,pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 1998;39:951–962.
Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram M K, Congdon NG, O''Colmain BJ, Friedman DS, The prevalence of refractive errors among adults in the United States,Western Europe, and Australia. Arch Ophthalmol 2004;122:495–505.
Kubota R, Mashima Y, Ohtake Y, Tanino T, Kimura T, Hotta Y, Kanai A, Tokuoka S, Azuma I, Tanihara H, Inatani M, Inoue Y, Kudoh J, Oguchi Y, Shimizu N. Novel mutations in the myocilin gene in Japanese glaucoma patients''. Hum Mutat. 2000; 16:270
Lam DS, Leung YF, Chua JK, Baum L, Fan DS, Choy KW, Pang CP. Truncations in the TIGR gene in individuals with and without primary open-angle glaucoma . Invest Ophthalmol Vis Sci 2000;41:1386-1391.
Leung YF, Fan BJ, Lam DSC. Lee WS, Tam POS, Chua JKH, Tham CCY, Lai JSM, Fan DSP, Pang CP. Different optineurin mutation pattern in Chinese primary open angle glaucoma patients. Invest Ophthalmol Visual Sci 2003; 44: 3880–84.
Levkovitch-Verbin H, Quigley HA, Martin KR, Valenta D, Baumrind LA, Pease ME. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 2002;43:402–410.
Lopez-Martinez F, Lopez-Garrido MP, Sanchez-Sanchez F, Campos-Mollo E, Coca-Prados M, Escribano Julio. Role of MYOC and OPTN sequence variations in Spanish patients with Primary Open-Angle Glaucoma. Mol Vis 2007;13: 862~72.
Mabuchi F, Yamagata Z, Kashiwagi K, Tang S, Iijima H, Tsukahara S. Analysis of myocilin gene mutations in Japanese patients with normal tension glaucoma and primary open-angle glaucoma. Clin Genet 2001; 59:263-268.
Mansergh FC, Kenna PF, Ayuso C, Kiang AS, Humphries P, Farrar GJ. Novel mutations in the TIGR gene in early and late onset open angle glaucoma. Hum Mutat 1998;11: 244-251.
Mao M, Biery M C, Kobayashi SV, Ward T, Schimmack G, Burchard J, Schelter JM, Dai H, He YD, Linsley PS. T lymphocyte activation gene identification by coregulated expression on DNA microarrays. Genomics 2004; 83: 989-999.
Melki R, Belmouden A, Akhayant O, Brezin A, Garchon HJ. The M98K variant of the OPTINEURIN (OPTN) gene modifies initial intraocular pressure in patients with primary open angle glaucoma. J Med Genet 2003; 40:842-44.
Melki R, Colomb E, Lefort N, Brezin AP, Garchon HJ. CYP1B1 mutations in French patients with early-onset primary open-angle glaucoma. J Med Genet 2004;41:647-651.
Mittag TW, Danias J, Pohorenec G, Yuan HM, Burakgazi E, Chalmers–Redman R, Podos SM, Tatton W. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2000; 41:3451-3459.
Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E, Liebmann J, Ritch R, Heon E, Crick RP, Child A, Sarfarazi M. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet 2005; 14: 725-733.
Morissette J, Cote G, Anctil JL, Plante M, Amyot M, Heon E, Trope GE, Weissenbach J, Raymond V. A common gene for juvenile and adult-onset primary open-angle glaucomas confined on chromosome 1q. Am J Hum Genet 1995;56(6):1431-1442.
Morissette J, Clepet C, Moisan S, Dubois S, Winstall E, Vermeeren D, Nguyen TD, Polansky JR, Cote G, Anctil JL, Amyot M, Plante M, Falardeau P, Raymond V. Homozygotes carrying an autosomal dominant TIGR mutation do not manifest glaucoma. Nat Genet 1998; 19(4): 319-321.
Moore CG, Milne ST, Morrison JC. Noninvasive measurement of rat intraocular pressure with the Tono-Pen. Invest Ophthalmol Vis Sci 1993;34:363-369.
Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK,Johnson EC. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997;64:85–96.
Nguyen TD, Chen P, Huang WD, Chen H, Johnson D, Polansky JR. Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem 1998;273: 6336-6350.
Ortego J, Escribano J, Coca-Prados M. Cloning and characterization of subtracted cDNAs from human ciliary body library encoding TIGR, a protein involved in juvenile open angle glaucoma with homology to myosin and olfactomedin. FEBS Lett 1997;413:349-353.
Pang CP, Leung YF, Chua JK, Baum L, Fan DS, Lam DS. Novel TIGR sequence alteration Val53Ala. Hum Mutat 2000; 15:122-122.
Pang CP, Leung YF, Fan B, Baum L, Tong WC, Lee WS, Chua JK, Fan DS, Liu Y, Lam DS. TIGR/MYOC gene sequence alterations in individuals with and without primary open-angle glaucoma. Invest Ophthal Visual Sci 2002;43:3231–3235.
Polansky JR, Fauss DJ, Chen P, Chen H, Lutjen-Drecoll E, Johnson D, Kurtz RM, Ma ZD, Bloom E, Nguyen TD. Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product. Ophthalmologica 1997; 211(3):126–139.
Polansky JR, Juster RP, Spaeth GL. Association of the myocilin mt.1 promoter variant with the worsening of glaucomatous disease over time. Clin Genet 2003;64:18–27.
Racette L, Wilson MR, Zangwill LM, Weinreb RN, Sample PA. Primary open-angle glaucoma in blacks, a review. Surv Ophthal 2003;48:295–313.
Rakhmanov VV, Nikitina NIa, Zakharova FM, Astakhov IuS, Kvasova MD, Vasil’ev VB, Golubkov VI, Mandel’shtam MIu. Mutations and polymorphisms in the genes for myocilin and optineurin as the risk factors of primary open-angle glaucoma. Genetika 2005; 41:1567-74.
Reese MG, Eeckman FH, Kulp D, Haussler D. Improved Splice Site Detection in Genie. J Comput Biol 1997;4(3):311-323.
Reitsamer HA, Kiel JW, Harrison JM, Ransom NL, McKinnon SJ. Tonopen measurement of intraocular pressure in mice. Exp Eye Res 2004;78: 799–804.
Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Heon E, Krupin T, Ritch R, Kreutzer D, Crick RP, Sarfarazi M. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 2002; 295: 1077–1079.
Richards JE, Lichter PR, Boehnke M, Uro JL, Torrez D, Wong D, Johnson AT. Mapping of a gene for autosomal dominant juvenile-onset open-angle glaucoma to chromosome 1q. Am J Hum Genet 1994;54(1): 62-70.
Sarfarazi M, Child A, Stoilova D, Brice G, Desai T, Trifan OC, Poinoosawmy D, Crick RP. Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet 1998; 62: 641-52.
Sawada A, Neufeld AH. Confirmation of the rat model of chronic, moderately elevated intraocular pressure. Exp Eye Res 1999;69:525-531.
Shareef SR, Garcia-Valenzuela E, Salierno A, et al. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 1995;61:379-382.
Sheffield VC, Stone EM, Alward WL, Drack AV, Johnson AT, Streb LM, Nichols BE . Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet 1993; 4: 47-50.
Sheldon WG, Warbritton AR, Bucci TJ, Turturro A. Glaucoma in food-restricted and ad libitum-fed DBA/2NNia mice. Lab Anim Sci 1995;45:508–518.
Shepard AR, Jacobson N, Millar JC, Pang IH, Steely HT, Searby CC, Sheffield VC, Stone EM, Clark AF. Glaucoma-causing myocilin mutants require the Peroxisomal targeting signal-1 receptor - PTS1R - to elevate intraocular pressure. Hum Mol Genet 2007; 16(6):609-617.
Stoilova D, Child A, Brice G, Crick RP, Fleck BW, Sarfarazi M. Identification of a new ''TIGR'' mutation in a family with juvenile-onset primary open angle glaucoma. Ophthalmic Genet 1997;18:109-118.
Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, Mackey DA, Ritch R, Kalenak JW, Craven ER, Sheffield VC. Identification of a gene that causes primary open angle glaucoma. Science 1997; 275: 668-70.
Sunden SL, Alward WLM, Nichols BE, Rokhlina TR, Nystuen A, Stone EM, Sheffield VC. Fine mapping of the autosomal dominant juvenile open angle glaucoma (GLC1A) region and evaluation of candidate genes. Genome Res 1996; 6(9): 862-869.
Tang S, Toda Y, Kashiwagi K, Mabuchi F, Iijima H, Tsukahara S, Yamagata Z. The association between Japanese primary open-angle glaucoma and normal tension glaucoma patients and the optineurin gene. Hum Genet 2003;113: 276–79.
Tsai IL, Woung LC, Tsai CY, Kuo LL, Liu SW, Lin S, Wang IJ. Trends in blind and low vision registrations in Taipei City. Eur J Ophthalmol 2008; 18:118-24.
Ueda J, Sawaguchi S, Hanyu T, et al. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol 1998;42: 337–344.
Wang DY, Fan BJ, Canlas O, Tam PO, Ritch R, Lam DS, Fan DS, Pang CP. Absence of myocilin and optineurin mutations in a large Philippine family with juvenile onset primary open angle glaucoma. Mol Vis 2004; 10: 851-56.
Weisschuh N, Schiefer U. Progress in the genetics of glaucoma. Dev Ophthalmol 2003; 37: 83-93.
Wiggs JL, Bono EAD, Schuman JS, Hutchinson BT, Walton DS. Clinical features of five pedigrees genetically linked to the juvenile glaucoma locus on chromosome 1q21-q31. Opthalmol 1995; 102(12): 1782-1789.
Wiggs J L, Haines J L, Paglinauan C, Fine A, Sporn C, Lou D. Genetic linkage of autosomal dominant juvenile glaucoma to 1q21-q31 in three affected pedigrees. Genomics 1994; 21: 299-303.
Wiggs JL, Auguste J, Allingham RR, Flor JD, Pericak-Vance MA, Rogers K, LaRocque KR, Graham FL, Broomer B, Del Bono E, Haines JL, Hauser M. Lack of association of mutations in optineurin with disease in patients with adult-onset primary open-angle glaucoma. Arch Ophthalmol 2003; 121: 1181–1183.
Woldemussie E, Ruiz G, Wijono M, et al. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser induced chronic ocular hypertension. Invest Ophthalmol Vis Sci 2001;42:2849-2855.
Wong TY, Loon SC, Saw SM. The epidemiology of age related eye diseases in Asia. Br J Ophthalmol 2006;90:506-11.
Yang J, Patil RV, Yu H, Gordon M, Wax MB. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am J Ophthalmol 2001;131: 421-426.
Yen YC, Yang JJ, Chou MC, Li SY. Identification of mutations in the myocilin (MYOC) gene in Taiwanese patients with juvenile-onset open-angle glaucoma. Mol Vis 2007; 13 :1627-34.
Yoon SJ, Kim HS, Moon JI, Lim JM, Joo CK. Mutations of the TIGR/MYOC gene in primary open-angle glaucoma in Korea. Am J Hum Genet 1999;64:1775-1778.
Zhan G, Miranda OC, Bito LZ. Steroid glaucoma: corticosteroid-induced ocular hypertension in cats. Exp Eye Res 1992;54:211-218.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 13.楊國榮、楊慕泉、趙際禮,「泥水加壓式潛盾機施工導致之地表沉陷探討(上)」,現代營建,第197期,29~35頁,民國85年5月。
2. 8.方永壽,「潛盾隧道施工與地盤沉陷」,營建知訊,第155期,27~30頁,民國84年12月。
3. 15.何泰源,「潛盾隧道施工所引致之地表沉陷及建物保護(上)」,現代營建,第131期,21~30頁,民國79年11月。
4. 12.萬正臺,「新店線CH218標潛盾隧道穿越建築物下方之施工探討」,捷運技術,第10期,46~55頁,民國83年2月。
5. 7.胡森、謝家麟,「軟弱土層潛盾隧道內補強灌漿之建物保護」,地工技術,第60期,65~82頁,民國86年4月。
6. 6.黃南輝、黃奕祥、黃姿連、楊鵬飛,「潛盾施工所導致之沉陷槽分析」,地工技術,第60期,45~56頁,民國86年4月。
7. 5.李建中、姚錫齡、翁斌,「潛盾隧道施工與地盤沉陷」,礦業技術, 28(1),26~44頁,民國79年3月。
8. 4.賴慶和、余明山、吳建閩、吳偉康,「以二次注入灌漿控制潛盾施工所引致之沉陷」,地工技術,第60期,83~96頁,民國86年4月。
9. 9.高宗正、陳俊宏、黃南輝,「捷運潛盾隧道穿越機場下方之沉陷控制」 ,地工技術,第118期,5~18頁,民國97年12月。
10. 16.何泰源,「潛盾隧道施工所引致之地表沉陷及建物保護(下)」,現代營建,第132期,31~35頁,民國79年12月。
11. 14.楊國榮、楊慕泉、趙際禮,「泥水加壓式潛盾機施工導致之地表沉陷探討(下)」,現代營建,第198期,27~32頁,民國85年6月。