(35.175.212.130) 您好!臺灣時間:2021/05/15 09:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂世福
研究生(外文):Shih-Fu Lu
論文名稱:短時間ACF之COF製程分析
論文名稱(外文):The Analysis of Short-Time ACF On COF
指導教授:鍾文仁鍾文仁引用關係
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:60
中文關鍵詞:覆晶薄膜製程異方向性導電膜最佳製程參數
外文關鍵詞:Anisotropic Conductive FilmBest Product ParameterFlip-Chip Film Process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:844
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為因應價格競爭日益激烈之面板產業,覆晶薄膜製程成為目前最常採用的生產方法;為了滿足面板電極接著需求,異方向性導電膜正廣泛應用於驅動晶片中。由於驅動晶片腳距持續微縮導致橫向腳位電極間距也越來越窄,為避免導電粒子在兩極間接觸而造成短路異方向性導電膜必須微小化;覆晶薄膜製程是藉由異方向性導電膜將驅動晶片固定在面板上,並藉由異方向性導電膜內之導電粒子連接面板電極而達成電氣導通;此一連接方式不但具備輕薄短小與成本低廉等優點,且是模組廠覆晶薄膜與面板電極接合製程之主要方法,本文後續實驗將以覆晶薄膜與面板電極接合為基礎進行有關探討。
為達到提升產能需求,短時間異方向性導電膜為主要研究方向;藉由改變不同覆晶薄膜與面板電極接合製程參數找出最佳製程條件,最佳製程條件必須依照短時間異方向性導電膜材料特性配合調整機台參數。壓著時間、壓力、溫度為本研究所欲探討之主要製程條件,每項參數調整需觀察導電粒子壓著狀態並分析電阻值與拉力值來找出最終實驗結果,實驗最終結果為晶片與面板氧化銦錫引腳銜接側壓力為0.23MPa、晶片與電路板銜接側為0.2MPa。經由調整溫度參數分析後發現溫度極限為170℃,因過低的溫度將造成壓力調整範圍變窄﹔最佳壓著時間在晶片與面板氧化銦錫引腳銜接側為6秒、晶片與電路板銜接側則為5秒,壓著時間太短將導致異方向性導電膜反應不完全。
The flip-chip film process has become the most useful technique because the plane is facing challenges such as price, demand, and performance. In order to meet the request of panel, the anisotropic conductive film (ACF) is commonly applied in the chip or liquid crystal display (LCD) field. A short circuit occurs in fine pitch package happens easily. The gap of ACF also tries to become minimization. The ACF is fixed on the plane and conducted by particles between electrodes on the substrate and chip. The advantage of this technique includes lower cost, thinner package, and lighter production. Furthermore, the module process always considers that states. This study focuses on the experiment of bonding process and its reliability.
In order to increase manufacturing capacity, the main direction of this study is to short curing time of ACF during investigation. The best product parameter is also fined by different bonding process which includes the bonding time, pressure and temperature, and it must meet the characteristic of ACF. The final results obtain the experiment form bonding state, pulling force and resistance of conductive particles by each adjusted parameters. According to the experimental data, the best bonding pressure in indium tin oxide on panel is 0.23MPa, and in printed circuit board is 0.2MPa, respectively. The bonding temperature is limited to 170℃; Meanwhile, the lower temperature range causes the narrow pressure to operate. The best bonding time is 6 Sec at indium tin oxide on panel, 5 Sec at printed circuit board. It means that if the bonding time is too short, it will cause the reaction of ACF to be incomplete
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 2
1-4 本文架構 4
第二章 異方性導電膜簡介與應用 5
2-1 異方性導電膜材料介紹 5
2-1-1 異方性導電膜的接合機制 7
2-1-2 ACF構成材料 7
2-2 新型ACF材料介紹 8
2-2-1 Hitachi Chemical的架構 8
2-2-2 Sony Chemical的架構 9
2-2-3 實驗用ACF介紹 13
2-3 導電粒子壓著狀態檢測 16
2-3-1 面板實溫量測 16
2-3-2 壓痕如何判定 17
2-3-3 拉力值量測 19
2-3-4 電性(阻抗值)量測 21
2-3-5 表頭壓力換算實際壓力 24
2-4 ACF於COF製程應用 25
2-4-1 共金製程 25
2-4-2 無導電粒子接合膠(Nomconductive Adhesive, NCA)製程 26
2-4-3 異方性導電膜接合 26
第三章 材料基礎理論說明 27
3-1 異方性導電膜的導電原理 27
3-2 超彈性材料(Hyperelastic) 29
3-3 接觸力 29
3-4 應力探討 30
第四章 以實驗設計方法分析結果與討論 32
4-1 實驗方法 32
4-1-1 實驗材料說明 32
4-1-2 機台壓頭溫度與ACF實際溫度量測 33
4-2 實驗結果討論 37
4-2-1 變更溫度參數測試 37
4-2-2 變更壓力參數測試 38
4-2-3 變更時間參數測試 39
4-2-4 阻抗值比較 40
4-2-5 材料脹縮值比較 41
4-2-6 拉力值比較 42
4-2-7 製程下限驗證 43
4-2-8 可靠度驗證 43
4-2-9 附加實驗 45
4-3 實驗參數優化 46
第五章 結論探討與未來展望 48
5-1 壓著溫度與壓著時間對短時間ACF的影響 48
5-2 壓著壓力對短時間ACF的影響 48
5-3 短時間ACF阻抗值、拉力值與材料脹縮 48
5-4 未來展望 49
參考文獻 50


圖目錄
圖1-1 ACF接合原理圖...........................................................................................1
圖2-1 ACF接合示意圖...........................................................................................5
圖2-2 ACF材料組成圖...........................................................................................6
圖2-3 Hitachi ACF結構示意圖..............................................................................9
圖2-4 Sony ACF結構示意圖................................................................................10
圖2-5 ACF反應率曲線圖.....................................................................................13
圖2-6 短時間ACF升溫曲線圖............................................................................14
圖2-7 短時間ACF反應率與溫度對照圖............................................................14
圖2-8 現行ACF升溫曲線圖................................................................................14
圖2-9 現行ACF反應率與溫度對照圖................................................................15
圖2-10 短時間ACF結構示意圖............................................................................15
圖2-11 短時間ACF實體圖....................................................................................15
圖2-12 實溫量測器.................................................................................................16
圖2-13 熱電偶實體圖.............................................................................................16
圖2-14 實溫量測位置示意圖.................................................................................17
圖2-15 實溫量測流程圖.........................................................................................17
圖2-16 壓著狀況判定示意圖.................................................................................19
圖2-17 壓痕規格示意圖(實際顯微鏡下)..............................................................19
圖2-18 拉力值量側流程圖.....................................................................................20
圖2-19 拉力測試機(SV-55A)............................................................................20
圖2-20 電性量測示意圖.........................................................................................24
圖2-21 表頭壓力換算實際壓力示意圖.................................................................24
圖2-22 COF IC示意圖............................................................................................25
圖2-23 COF結構示意圖.........................................................................................25
圖2-24 COF IC Bonding示意圖.............................................................................26
圖3-1 導電機制示意圖.........................................................................................27
圖3-2 導電顆粒間電極導通情形.........................................................................27
圖4-1 Fine Pitch面板示意圖................................................................................33
圖4-2 G側機台表實溫對照圖..............................................................................34
圖4-3 G側機台升溫曲線圖..................................................................................34
圖4-4 S側機台表實溫對照圖..............................................................................35
圖4-5 S側機台升溫曲線圖..................................................................................35
圖4-6 PWB側機台表實溫對照圖........................................................................36
圖4-7 PWB側機台升溫曲線圖............................................................................36
圖4-8 實驗一OLB側壓痕狀況...........................................................................38
圖4-9 OLB側實際壓著狀態圖............................................................................39
圖4-10 實驗三OLB側壓痕狀況...........................................................................40
圖4-11 實驗三OLB側與PWB側電性量測狀況.................................................41
圖4-12 材料脹縮比較.............................................................................................42
圖4-13 拉力值比較圖.............................................................................................42
圖4-14 主效應圖OLB-S側....................................................................................47
圖4-15 主效應圖OLB-G側...................................................................................47
圖4-16 主效應圖PWB側.......................................................................................47


表目錄
表2-1 導電粒子比較表...........................................................................................7
表2-2 Hitachic ACF廠商規格表..........................................................................11
表2-3 Sony ACF廠商規格表................................................................................11
表2-4 壓痕判定規格表.........................................................................................18
表2-5 電性量測位置.............................................................................................23
表3-1 製程材料係數表.........................................................................................29
表4-1 實驗品ACF規格表....................................................................................33
表4-2 現行品ACF規格表....................................................................................33
表4-3 實驗一OLB測試結果...............................................................................37
表4-4 實驗一PWB測試結果...............................................................................38
表4-5 壓力參數變更測試結果.............................................................................39
表4-6 壓力測試範圍比較.....................................................................................39
表4-7 時間參數變更OLB測試結果...................................................................40
表4-8 時間參數變更PWB測試結果...................................................................40
表4-9 OLB製程下限實驗....................................................................................43
表4-10 PWB製程下限實驗....................................................................................43
表4-11 一般Sample可靠度驗證...........................................................................44
表4-12 劣化Sample可靠度驗證...........................................................................45
表4-13 可靠度驗證後拉力量測.............................................................................45
表4-14 最終測試結果.............................................................................................45
表4-15 附加實驗結果.............................................................................................46
參考文獻
[1]王志方,台灣工業銀行綜合研究所,2006年。
[2]饒瑞年,「異方性導電膜應用於COG製程之分析」,中央大學機械工程研究所碩士論文,2000。
[3]黃仁亮,「製程參數對 COG 製程影響之分析」,中華大學機械與航太工程研究所碩士論文,2001。
[4]Y. P. Wu, M. O. Alarm, Y. C. Chan, B. Y. Wu, “Dynamic Strength of Conductive Joints in Flip Chip on Glass and Flip Chip on Flex Packages.”, Microelectronics Reliability, Vol. 44, pp. 295-302, 2004.
[5]施文勝,「運用六標準差手法於液晶顯示器模組COG製程改善之研究」,逢甲大學工業工程與管理研究所碩士論文,pp. 12-13,1996。
[6]黃仁亮,「製程參數對COG製程影響之分析」,中華大學機械與航太工程研究所碩士論文,2001。
[7]S. P. Timoshenko, J. N. Goodier, “Theory of Elasticity”, 3rd, McGraw-Hill, pp. 409-414, 1970.
[8]M. J. Yim, K. W. Paik, “Design and Understanding of Anisotropic Conductive Films (ACS’s) for LCD Packaging”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Park A, Vol. 21, No. 2, pp. 226-234, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top