跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 12:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李得民
研究生(外文):Dermine Lee
論文名稱:甲醇燃料電池於細胞培養箱上之整合應用與探討
論文名稱(外文):System integration of fuel cell and cell incubator
指導教授:婁世亮
學位類別:碩士
校院名稱:中原大學
系所名稱:醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:95
中文關鍵詞:濕度控制溫度控制直接甲醇燃料電池細胞培養箱
外文關鍵詞:TemperaCell IncubatorDirect Methanol Fuel Cell (DMFC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文整合完成一套環保細胞培養系統。該系統大致可分為直接甲醇燃料電池模組及細胞培養箱模組。兩者均設計有以單晶片MSP430F1611為核心的控制電路。系統中甲醇燃料電池模組之燃料電池是將化學能轉換為電能,其控制電路則是調控周邊電路變化電壓負載、電能儲存等功能。細胞培養箱模組中含有一40 x 25 x 18 cm3的細胞培養箱和一感測控制電路,培養箱中的CO2、濕度及溫度即是藉這感測控制電路調控之。
論文中,以探討燃料電池的物理與化學特性與驗證細胞培養箱的功能性為重點。在燃料電池模組實驗方面,當輸出負載為7.2、8.1、9.0及10 V時,可使用之電流從1400 mA隨負載電壓上升而下降至350 mA。然而,當負載電流越高,電池可使用的時間越短。在副產物CO2方面,它的產生也隨著負載電壓增加而下降,如當負載為7.2 V時有50 sccm的CO2產生,然而當負載高達10 V時CO2的產生則下降至3 sccm。在檢驗儲存槽回流水之甲醇含量實驗方面,本研究運用氣相層析質譜儀完成一檢量線,藉以比對經加熱10 %體積比之甲醇水,結果顯示這甲醇水加溫至90 ℃維持四個小時可以得到接近純水。
本研究發展的溫控系統在30分鐘內可以將培養箱控制在37±0.1 ℃的範圍。濕度控制系統在8分鐘之內可以將培養箱控制在95±1 %相對濕度的範圍。CO2控制系統則在3.2分鐘之內將培養箱內的CO2濃度控制在5±2 %的範圍。本系統與市售細胞培養箱共同培養小鼠巨噬細胞,MTT測試結果顯示本系統的功能性約為市售系統之96 %。
In this course, we have developed an environmental protection based cell culture incubator, which mainly includes a direct methanol fuel cell (DMFC) system and a cell culture system. Each of these systems is coordinated by a control module centered on a microchip, MSP430F1611.
The DMFC system includes a fuel cell pack serving as an energy conversion device of methane to electricity. The control module in the DMFC system is used to regulate voltage load, energy storage etc. The cell culture system is composed of an acrylic chamber with the size of 40 x 25 x 18 cm3 and a sensing circuit. This circuit detects and manages the concentrations of CO2, humidity, and temperature of the chamber.
The fuel cell pack was applied by a series of voltage loads to examine how the voltage load affects the applications of the fuel cell. When the loads of 7.2、8.1、9.0 and 10 V were used, the applicable currents generated by the fuel cell pack decreased from 1400 to 350 mA. Yet, the production of CO2 is inversely proportional to the voltage load used. Importantly, when high electrical current is used, the allowed usage duration of the fuel cell reduces.
In this course, the design is to apply the water from the fuel cell to supply humidity for the cell culture chamber. Unfortunately, the water is always mixed with methane that was not fully utilized by the DMFC pack. Thus, it is important to develop a method to eliminate methane from the mixture. Our approach is to steam the mixture because the boiling point of methane is about 36 oC lower than water. Our experiment results indicate that in order to obtain pure water from 10% methane water it requires boiling the mixture for four hours at 90 oC.
The developed control module associated with the cell culture system
is able to supply the temperature, humidity and CO2 concentration required in the chamber. It heated up the chamber from the room temperature to 37±0.1 oC less than 30 minutes, reached the humidity level of 95±1 % within 8 minutes, and maintained the CO2 concentration in the range of 5±2 % in 3.2 minutes. The feasibility of using the developed chamber to culture cells was evaluated by comparing its cell culture performance with that of a commercial CO2 incubator. The cell line of RAW264.7 was used in the comparison study and the MTT assay was applied to evaluate cell survival rate. The results show that the amount of the cells cultured in the developed chamber is about 96% of the commercial incubator.
目錄
摘要...............................................................................................................I
ABSTRACT.................................................................................................II
謝誌.............................................................................................................IV
目錄..............................................................................................................V
表索引..........................................................................................................X
表索引..........................................................................................................X
第一章 緒論...............................................................................................1
1.1 研究背景....................................................................................1
1.2 文獻回顧....................................................................................2
1.2.1 細胞培養箱系統................................................................2
1.3 研究動機與目的........................................................................6
1.4 論文架構....................................................................................9
第二章 研究理論.....................................................................................10
2.1 燃料電池發展與種類..............................................................10
2.1.1 燃料電池發展..................................................................10
2.1.2 燃料電池種類..................................................................13
2.1.3.1 主動式直接燃料電池.............................20
2.1.3.2 被動式直接甲醇燃料電池...................21
2.2 直接甲醇燃料電池介紹..........................................................21
2.2.1 直接甲醇燃料電池工作原理.........................................21
2.3 甲醇燃料電池發電系統基本組成元件................................28
2.3.1 發電主體....................................................................29
2.3.2 周邊相關輔助系統.................................................29
VI
2.3.3電源管理系統...................................................................30
第三章 研究架構與方法..........................................................................35
3.1 系統架構..................................................................................35
3.2 甲醇燃料電池發電系統..........................................................35
3.3 環境調控系統與培養箱外殼..................................................41
3.3.1 溫濕度偵測設計..............................................................44
3.3.2 濕度控制模組之設計.....................................................44
3.3.3 二氧化碳濃度偵測.........................................................45
3.3.4 二氧化碳濃度控制設計.................................................46
3.4 實驗方法與步驟......................................................................47
3.4.1 甲醇燃料電池系統.........................................................48
3.4.1.1 甲醇燃料電池在電力分析之實驗.....................48
3.4.1.2 甲醇燃料電池在二氧化碳氣體流量之實驗.....48
3.4.1.3 純水之分析實驗.................................................49
3.4.2 細胞培養箱效能分析.....................................................50
第四章 研究結果與討論..........................................................................52
4.1 甲醇燃料電池主、副產物產量分析結果..............................53
4.1.1 甲醇燃料電池輸出電力分析.........................................53
4.1.2 甲醇燃料電池之二氧化碳氣體輸出流量分析.............56
4.1.3 甲醇燃料電池之二氧化碳氣體輸出流量與輸出電力關係......................................................................................59
4.2 細胞培養用純水製造與甲醇水溶液關係實驗......................60
4.2.1 甲醇水溶液檢量線.........................................................60
4.2.2 甲醇水溶液之最大加熱時間.........................................62
4.2.3 純水分析與探討..............................................................64
VII
4.3 細胞培養箱雛型在環境因素穩定度測試實驗......................64
4.3.1 溫度監控結果..................................................................65
4.3.2 濕度監控結果..................................................................66
4.3.3 二氧化碳監控結果.........................................................67
4.3.4 細胞培養箱環境因素監控數據分析與探討.................68
4.4 細胞培養箱雛型對於細胞培養之結果..................................69
第五章 結論與未來展望..........................................................................72
5.1 結論...........................................................................................73
A. 培養用純水分析與探討......................................................76
B. 細胞培養箱雛型系統在環境因素穩定度測試實驗..........77
C. 細胞培養箱雛型對於細胞培養之結果..............................78
5.2 未來展望..................................................................................79
附錄B.........................................................................................................83
附錄C.........................................................................................................84
圖索引
圖1- 1 替代細胞培養箱系統架構............................................................6
圖2- 1 WILLIAM GROVE基本電池構造..................................................11
圖2-2 GROVE氣體電池..........................................................................11
圖2- 3 GROVE燃料電池基本架構..........................................................12
圖2- 4 高分子燃料電池基本架構圖......................................................18
圖2- 5 聚全氟磺酸質子傳導示意圖......................................................19
圖2- 6 直接甲醇燃料電池基本工作示意圖..........................................22
圖2- 7 電子負載計與甲醇燃料電池連接測試示意圖..........................23
圖2- 8 12瓦特燃料電池.........................................................................26
圖2-9 單一燃料電池示意圖,A和G為集電板、B和F為流道板、C和E為墊片、D為模電極組.....................................................26
圖2- 10 甲醇燃料電池發電系統架構示意圖..........................................28
圖2- 11 甲醇燃料電池周邊相關輔助系統示意圖.........................30
圖2- 12 電源管理系統架構示意圖..........................................................31
圖3- 1 電子負載計外觀圖......................................................................37
圖3-2 甲醇燃料電池之液位高度偵測與燃料電池輸出液體加熱方.40
圖3-3 環境調控系統方塊圖.................................................................42
圖3-4 環境調控系統與培養箱外殼組合示意圖.................................43
圖3-5 繪圖式液晶顯示器螢幕顯示培養箱中環境因素資訊.............43
圖3-6 以加熱棒加熱純水增加濕度示意圖.........................................45
圖3-7 二氧化碳濃度感測器.................................................................46
圖3-8 二氧化碳氣體控制閥線路圖.....................................................47
圖3-9 氣象層析分析儀.........................................................................50
IX
圖4-1 電子負載計定電壓設定值為7.2、8.1、9.0與10 伏特之甲醇燃料電池輸出電流對時間曲線圖.................................................54
圖4-2 電子負載計定電壓設定值為7.2、8.1、9.0與10 伏特之甲醇燃料電池輸出二氧化碳量對時間曲線圖......................................57
圖4- 3 濃度0~10%之甲醇濃度檢量線..................................................61
圖4- 4 微控器輸出之PWM圖形...........................................................65
圖4- 5 細胞培養箱環境溫度監控圖......................................................66
圖4- 6 細胞培養箱環境濕度監控圖......................................................67
圖4- 7 細胞培養箱二氧化碳濃度監看圖..............................................68
圖4- 8 實驗組之巨噬細胞實照圖..........................................................69
圖4- 9 對照組之巨噬細胞實照圖..........................................................70
圖4-10 實驗組與對照組之巨噬細胞存活統計圖..................................71
圖5-1 環境調控系統與培養箱外殼組合示意圖...................................73
表索引
表4- 1 甲醇燃料電池氣體電壓特性比較表..........................................59
表4- 2 GC-MASS測試下甲醇各濃度波峰值.......................................61
表4- 3 GC-MASS測試不同溫度下所殘留甲醇波峰值.......................63
表4- 4 GC測試燃料電池出水孔所排出之水溶液殘留甲醇波峰值...63
參考文獻
[1] GS Christiansen, B. Danes, L. Allen, P.J. Leinfelder, “A culture chamber for the continuous biochemical and morphological study of living cells in tissue culture,” Exp. Cell Res, 5:10-15, 1953.
[2] G. Rose, “A separate and multipurpose tissue culture chamber,” Tex. Rep., Biol. Med., 12:1075-1081, 1954.
[3] J.A. Sykes, E.B. Moore, A new chamber for tissue culture., Proc. Soc. Exp. Biol. Med. 100:125, 1959.
[4] T. Sasakia, K. Abeb, “Development of a transportable incubator for autoradiographic experiments with positron emitter-labeled tracers in living brain tissues,” Brain Research Protocols 8 170-175, 2001.
[5] 王俊仁, “顯微鏡細胞培養的窩流溫空平台”, 中 原 大 學生物醫學工程學系碩士論文, 2007.
[6] 林伸茂, “新能源時代之DMFC直接甲醇燃料電池原理、應用與實作”, 旗標科技有限公司, 勝光科技股份有限公司, 2006.
[7] 郭丁嘉, “迷你環空箱之研發”, 台灣大學生物機械工程學研究所碩士論文, 2003.
[8] Y. Tamaoki, H. Busujima, W. B.White, “A Cell culture CO2 incubator with continuous contamination,” Application Note of SANYO Electric Biomedical CO. Ltd, Osaka, Japan, 2002.
81
[9] Solent Scientific Ltd. “Environmental control for live cell imaging,” Glas-Instrumenten-Technik Imaging & Microscopy, Vol. 7 pp. 40-41, 2005.
[10] 鄭國良, “燃料電池應用於生物醫學科技之可行性探討”, 中原大學生物醫學工程學系碩士論文, 2005.
[11] MI A. Laughton, “Fuel cells,” The IEEE Power Engineering Jouring Volume 16, Page(s):37 – 47, Feb. 2002.
[12] L.Palma Design, M. Harfman Todorovic, P. Enjeti Considerations, “Design Considerations for a Fuel Cell Powered DC-DC for Portable Applications,” 0-7803-9547-6,06, 2006.
[13] Jay B. Benziger, M. Barclay Satterfield, Warren H.J. Hogarth, James P. Nehlsen, Ioannis G. Kevrekidis “The power performance curve for engineering analysis of fuel cells,” Journal of Power Sources 155, 272–285, 2005.
[14] L. Palma Design, P. Enjeti “A Modular Fuel Cell, Modular DC-DC Converter concept for High Performance and Enhanced Reliability,” Power Electronics Specialists Conferences, 17-21 Page(s):2633 – 2638, June 2007.
[15] 郭丁嘉, “迷你環空箱之研發”, 台灣大學生物機械工程學研究所碩士論文, 2003.
[16] 葉芸瑄, “直接甲醇燃料電池MEA之理論與模擬分析”, 中山大學機械與機電工程研究所碩士論文, 2004.
82
[17] Texas Instruments, “MSP430 Fx1xx User Guide,” DATASHEET.
[18] Texas Instruments, “MSP430x1xx Family Data Sheet,” 2006.
[19] Linear Technology, “LTC1733 Data Sheet,” 2006.
[20] Sensirion, “SHT-11 Data Sheet,” 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top