跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭任欽
研究生(外文):Ren. Chin. Cheng
論文名稱:二維光子晶體增大完全帶隙之研究
論文名稱(外文):An evaluation for enlarging the complete bandgap on two-dimensional photonic crystal
指導教授:周趙遠鳳
指導教授(外文):Yuan. Fong. Chou. Chau.
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:95
語文別:中文
論文頁數:39
中文關鍵詞:光子晶體平面波展開法帶隙時域有限差分法光子晶體平面波展開法帶隙時域有限差分法光子晶體平面波展開法帶隙時域有限差分法
外文關鍵詞:photonic crystalPWEband gapphotonic crystalPWEband gapphotonic crystalPWEband gap
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
光子晶體是一門新發展中的領域,可運用於光子晶體光纖及光子晶體雷射等方面。有關二維光子晶體完全帶隙的研究,本文以數值模擬方法,利用平面波展開法針對二維光子晶體正方晶格砷化鎵(GaAs)介質圓柱以正方格子狀結構之介質連結,發現正方格子狀介質之寬度與介質柱半徑的大小影響帶隙變化至鉅,經由參數之最佳化選擇後,發現能有效增加光子晶體完全帶隙的寬度,當格子寬度為31 nm時,介質柱半徑為305 nm時,帶隙寬度可達Δω=0.08216(2πc/a)。此結果大於文獻 [22]中所提出之Δω=0.0685 (2πc/a),帶隙寬度明顯提昇約20%。若針對二維光子晶體正方晶格介質圓柱以交差格子狀結構連結,此結構經由參數之最佳化選擇後,發現亦能有效增加光子晶體完全帶隙的寬度,當格子寬度為65nm時,介質柱半徑為295.3nm時,帶隙寬度可達Δω=0.10664 (2πc/a)。此結果又比文獻 [22]所提出之Δω,帶隙寬度明顯提昇約40%。本論文最後一章以時域有限差分法探討二維三角晶格圓柱之傳輸特性,而進一步用不同的數值模擬方法了解光子晶體之帶隙特性。
Optimal design of a two-dimensional photonic crystal with a square lattice of dielectric rods with veins in GaAs is investigated numerically using plane wave expansion method. It is shown that how a maximum complete two-dimensional band gap is obtained by optimally connecting the dielectric rods with cubic shape veins. The complete two-dimensional photonic bandgap of our optimal design reaches Δω= 0.08216 (2πc/a) (where a is the lattice constant, c is the light speed in vacuum) when the radius of dielectric rod is 305 nm and the half width of vein is 31 nm. In additions, a maximum complete two-dimensional band gap is obtained by optimally connecting the dielectric rods with cross shape veins, which bandgap reaches Δω= 0.10664 (2πc/a) when the radius of dielectric rod is 295.3 nm and the half width of vein is 65 nm.. This analysis provides a new design method in bandgap engineering and gives a guideline for practical fabrication. In the last chapter of this thesis, we use the other simulation method, finite different time domain method, to explore the transmission characteristic of a two-dimensional Photonic crystal with square lattice dielectric rods.
中文摘要………………………………………………………………………………… i
英文摘要………………………………………………………………………………… ii
誌謝……………………………………………………………………………………… iii
目錄……………………………………………………………………………………… iv
圖目錄…………………………………………………………………………………… vi
第一章 前言…………………………………………………………………………… 1
1.1 光子晶體簡介……………………………………………………………… 1
1.2文獻回顧…………………………………………………………………… 4
1.3研究動機…………………………………………………………………… 7
1.4論文章節概要……………………………………………………………… 7
第二章 模擬方法-平面波展開法與時域有限差分法 ……………………………… 9
2.1 前言……………………………………………………………………… 9
2.2 平面波展開法…………………………………………………………… 9
2.3 時域有限差分法………………………………………………………… 12
第三章 提昇二維光子晶體完全帶隙之寬度設計-以正方格子連接介質柱………… 14
3.1 前言……………………………………………………………………… 14
3.2 數值模型………………………………………………………………… 14
3.3結果與討論……………………………………………………………… 19
3.4結論……………………………………………………………………… 22
第四章 提昇二維光子晶體完全帶隙之寬度設計-以交叉格子連接介質柱………… 23
4.1 前言……………………………………………………………………… 23
4.2 數值模型………………………………………………………………… 23
4.3結果與討論……………………………………………………………… 24
4.4結論……………………………………………………………………… 28
第五章 以時域有限差分法研究三角晶格光子晶體之傳輸效率與能帶特性……… 29
5.1 前言……………………………………………………………………… 29
5.2 數值模型………………………………………………………………… 29
5.3結果與討論……………………………………………………………… 30
5.4結論……………………………………………………………………… 31
第六章 結論…………………………………………………………………………… 33
參考文獻………………………………………………………………………………… 35
簡歷……………………………………………………………………………………… 38
1鄭百淳,二維光子晶體一對三平均分光器之設計,龍華科技大學,碩士論文,民國94年。
2 欒丕綱、陳啓昌,光子晶體—從蝴蝶翅膀到奈米光子學,五南出版社 ,民國94年。
3 Allen Taflove and M. E.Brodwin, “Numerical solution of the steady-state EM scattering problems using the time-depend Maxwell’s equation”, IEEE Trans. Microwave Theory Tech.,Vol. MTT-23,No.8 p.623,1975.
4 Brown E. R, Parker C D, Yablonovitch E. “Raduation properties planar atenna on a photonic crystal subtrate”. J. Opt. Soc. Am. (B), 1993, 10(2):404~407
5 C. T. Chan, Q. L. Yu, and K. M. Ho, “Oder-N Spectral Method for Electromagnetic Wave”, Phys. Rev. B 51, pp. 16635-16642 (1995).
6 D. Cassagne, C. Jouanin, and D. Bertho, “Photonic Band Gaps in Two-Dimensional Graphite Structure”, Phys. Rev. B 52, pp. R2217-R2220 (1995).
7 E. Yablonovitch and T. J. Gmitter, “Photonic Band Structure: The Face-Centered-Cubic Case”, Phys. Rev. Lett. 63, pp. 1950-1953 (1989).
8 E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics”, Phys. Rev. Lett. 58, pp. 2059-2602 (1987).
9 E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Stoms”, Phys. Rev. Lett. 67, pp. 2295-2298 (1991).
10 H. Benisty, M. Rattier and S. Olivier, “Two-Dimensional Photonic Crystals: New Feasible Confined Optical Systems”, C. R. Physique 3, pp. 89-102 (2002).
11 H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic Bands: Convergence Problem with the Plane-Wave Method”, Phys. Rev. B 45, pp. 13962-13972 (1992).
12 J. B. Pendry and A. MacKinnon, “Calculation of Photon Dispersion Relation”, Phys. Rev. Lett. 69, pp. 2772-2775 (1992).
13 J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals, Molding the
Flow of Light”, Princeton U. Press, (1995).
14 J. P. Berenger, “A perfectly matched layer for the absorbing boundary condition,” J.
Comput. Phys. 114, 185–200 (1994).
15 K. M. Ho, C. T. Chart, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic
Dielectric Structures”, Phys. Rev. Lett. 65, pp. 3152-3155 (1990).
16 K. M. Leung and Y. F. Liu, “Full Bector Wave Calculation of Photonic Band
Structure in Face-Centered-Cubic Dielectric Media”, Phys. Rev. Lett. 65, pp.
2646-2649 (1990).
17 K. Sakoda, ”Optical Properties of Photonic crystals”, Springer, (2001).
18 K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media. IEEE Trans. Antennas Propagat., 1966,AP-14:302-307
19 Lin Shawnyu, Chow Edmund, Hietala Vice et al.. “Experimental demonstration of
guiding and bending of electromagnetic waves in a photonic crystal”. Science,1998,
282 (5387):274~276
20 L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two dimensional complete bandgap”, J. Opt. Soc. Am. B , Vol. 23 (8) 1708-1711, 2006
21 M. Maldovan, L. T. Edwin, W. C. Craig, “Layer by layer diamond-like structure with a large photonic band gap.” Appli. Phys. Lett., 84(3), 362-364 (2004)
22 M. Qiu, S. He, “Optimal design of a two-dimensional photonic crystal of a square lattice with a large complete two-dimensional bandgap”, J. Opt. Soc. Am. B., 1027-1030 (2000)
23 M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng,”Two-Dimensional
Photonic Band Structures”, Optics Communications. 80, pp. 199-204 (1991).
24 M. Plihal and A. A. Maradudin, “Photonic Band Structures of Two-Dimensional
Systems: The Triangular Lattice”, Phys. Rev. B 44, pp. 8565-8571 (1991).
25 M. Uiu, B. Jaskorzynska , M Swillo, “Time domain 2D modeling of slab waveguide
based photonic crystal devises in the presence of out of plane radiation losses.”, J.
Microwave Opt. Techn. Lett., 34(5), 387-393 (2002)
26 Painter O, Lee R K, Scherer A et al.. “Tw-dimensional photonic band-gap defect mode laser. Science,1999, 284 (5241):1819~1821
27 P. R. Villeneuve and M. Piche, “Photonic Band Gaps in Two-Dimensional Square and Hexagonal Latteces”, Phys. Rev. B 46, pp. 4969-4972 (1992).
28 P. R. Villeneuve and M. Piche, “Photonic Band Gaps in Two-Dimensional Square Lattices: Square and Circular Rods”, Phys. Rev. B 46, pp. 4973-4975 (1992).
29 R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band Gap in Two Dimensions”, Appl. Phys. Lett. 61, pp. 495-497 (1992).
30 S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattice”, Phys. Rev. Lett. 58, pp. 2486-2489 (1987).
31 T. Baba and T. Matsuzaki, “Theoretical Calculation of Photonic Gap in Semiconductor 2-Dimensional Photonic Crystals with Various Shapes of Optical Atoms”, Jpn. J. Appl. Phys. 34, pp. 4496-4498 (1995).
32 W. Li, Z. S. Wang, Y. G. Wu, “Enlarge of the nontrnsmission frequency range of multiple-channel filters by the use of heterostructures”, J. Appl. Phys. 95(2), 424-426 (2004)
33 Z. Zhang and S. Satpathy, “Electromagnetic Wave Propagation in Periodic Structure:
Bloch Wave Solution of Maxwell’s Equations”, Phys. Rev. Lett. 65, pp. 2650-2653 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top