[1]江堆金,張嘉展,SoC開發實戰:使用Verilog,學貫行銷,台北市,民國九十三年。
[2]范逸之,陳立元,Visual Basic與RS-232串列通訊控制最新版,文魁資訊,台北市,民國九十年。
[3]鄭信源,Verilog硬體描述語言數位電路,二版,儒林圖書公司,台北市,民國八十九年。
[4]楊文傑,「使用模糊小腦模型連結控制器及FPGA實現交流馬達解耦的定子磁通及轉矩成分」,明志科技大學,碩士論文,民國九十六年。[5]龔書暉,「內嵌內容可定址記憶體之CMAC控制器」,中正大學,碩士論文,民國九十年。[6]A. Savran, “Multifeedback-Layer Neural Network,” IEEE Transactions on Neural Networks, Vol. 18, No. 3, pp. 373-384, 2007.
[7]C. F. Juang and C. T. Lin, “A Recurrent Self-Organizing Neural Fuzzy Inference Network,” IEEE Transactions on Neural Networks, Vol. 10, No. 4, pp. 828-845, 1999.
[8]C. S. Lin and C. K. Li, “A Sum-of-Product Neural Network (SOPNN),” Neurocomputing, Vol. 30, pp. 273-291, 2000.
[9]C. S. Lin and C. T. Chiang, “Learning Convergence of CMAC Technique,” IEEE Transactions on Neural Networks, Vol. 8, No. 6, pp. 1281-1292, 1997.
[10]C. T. Chiang and C. M. Chong, “Hardware Implementation of a Simple Structure of Addressing Technique for CMAC_GBF,” IEEE International Symposium on Industrial Electronics, Vol. 1, pp. 139-144, 2005.
[11]C. T. Chiang and C. S. Lin, “Integration of CMAC and Radial Basis Function Techniques,” IEEE International Conference on Intelligent Systems for the 21st, Vol. 4, pp. 3263-3268, 1995.
[12]C. T. Chiang and C. S. Lin, “CMAC with General Basis Functions.” Journal of Neural Networks, Vol. 9, No. 7, pp. 1199-1211, 1996.
[13]C. T. Chiang, T. S. Chiang and C. K. Li, “A Simple and Converged Structure of Addressing Technique for CMAC_GBF,” 2004 IEEE International Conference on Systems, Man and Cybernetics, pp. 6097-6101, 2004.
[14]C. T. Chiang and T. S. Chiang, “A Converged Recurrent Structure for CMAC_GBF and S_CMAC_GBF,” IEEE International Symposium on Industrial Electronics, pp. 1876-1881, 2007.
[15]D. Marr, “A Theory of Cerebellar Cortex,” J. Physiol, Vol. 202, pp. 437-470, 1969.
[16]D. S. Reay, T. C. Green and B. W. Williams, “Field Programmable Gate Array Implementation of A Neural Network Accelerator,” IEE Colloquium on Hardware Implementation of Neural Networks and Fuzzy Logic, pp. 2/1-2/3, 1994.
[17]F. O. Rodriguez, W. Yu and M. A. Moreno-Armendariz, “Nonlinear Systems Identification Via Two Types of Recurrent Fuzzy CMAC,” IEEE International Joint Conference on Neural Networks, pp. 823-828, 2007.
[18]J. C Jan and S. L. Hung, “High-Order MS-CMAC Neural Network,” IEEE Transactions on Neural Networks, Vol. 12, No. 3, pp. 598-603, 2001.
[19]J. S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC),” Journal of Dynamic System, and Control, Transaction of ASME, pp. 220-227, 1975.
[20]J. S. Albus, “Data Storage in the Cerebellar Model Articulation Controller (CMAC),” Journal of Dynamic Systems, Measurement and Control, Transaction of ASME, pp. 228-233, 1975.
[21]J. S. Ker, Y. H. Kuo, R. C. Wen and B. D. Liu, “Hardware Implementation of CMAC Neural Network with Reduced Storage Requirement,” IEEE Transactions on Neural Networks, Vol. 8, No. 6, pp. 1545-1556, 1997.
[22]L. Weruaga and B. Kieslinger, “Tikhonov Training of the CMAC Neural Network,” IEEE Transactions on Neural Networks, Vol. 17, No. 3, pp. 613-622, 2006.
[23]M. Miwa, “Cerebellar Model Arithmetic Computer with Bacterial Evolutionary Algorithm and Its Hardware Acceleration Using FPGA,” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 5, pp. 591-595, 1999.
[24]M. Miwa, “CMAC Modeling Using Bacterial Evolutionary Algorithm (BEA) on Field Programmable Gate Array (FPGA),” Industrial Electronics Society, 2000. IECON2000. 26th Annual Conference of the IEEE, Vol. 1, pp. 644-650, 2000.
[25]N. Sadati, M. Bagherpour and R. Ghadami, “Adaptive Multi-Model Controller for Robotic Manipulators Based on CMAC Neural Networks,” IEEE International Conference on Industrial Technology, pp. 1012-1017, 2005.
[26]P. A. Mastorocostas and J. B. Theocharis, “A Recurrent Fuzzy-Neural Model for Dynamic SystemIdentification,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 32, No. 2, pp. 176-190, 2002.
[27]P. S. Sastry, G. Santharam and K. P. Unnikrishnan, “Memory Neural Networks for Identification and Control of Dynamical Systems,” IEEE Transactions on Neural Networks, Vol. 5, No. 2, pp. 306-319, 1994.
[28]R. J. Wai, C. M. Lin and Y. F. Peng, “Robust CMAC neural network control for LLCC-resonant driving linear piezoelectric ceramic motor,” IEE Proceedings Contr. Theory Applications., Vol. 150, No. 3, pp. 221-232, 2003.
[29]S. H. Lane, D. A. Handelman and J. J. Gelfand, “Theory and Development of Higher-Order CMAC Neural Networks,” IEEE Control System, Vol. 12, pp. 23-30, 1992.
[30]S. Santini, A. D. Bimbo and R. Jain, “Block-Structured Recurrent Neural Networks,” Neural Networks, Vol. 8, No. 1, pp. 135-147, 1995.
[31]W. T. Miller, F. H. Glanz and L. G. Kraft, “Application of a General Learning Algorithm to the Control of Robotics Manipulators,” The International Journal of Robotics Research, Vol. 6, No. 2, pp. 84-98, 1987.
[32]W. T. Miller, F. H. Glanz and L. G. Kraft, “CMAC: An Associative Neural Network Alternative to Backpropagation,” Proceedings of the IEEE, Vol. 78, No. 10, pp. 1561-1567, 1990.
[33]W. T. Miller, “Real-Timer Neural Network Control of A Biped Walking Robot,” IEEE Control Systems Magazine, Vol. 14, No. 1, pp. 41-48, 1994.
[34]Y. H. Kim and F. L. Lewis, “Optimal Design of CMAC Neural-Network Controller for Robot Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 30, No. 2, pp. 22-31, 2000.
[35]Y. Iiguni, “Hierarchical Image Coding via Cerebeller Model Arithmetic Computers”, IEEE Transactions on Image Processing, Vol. 5, No. 10, pp. 1393-1401, 1996.