跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇月熿
研究生(外文):Yech-Hwang Su
論文名稱:厭氧反應槽中都市固體廢棄物與灰燼共同掩埋之重金屬與揮發性有機物溶出研究
論文名稱(外文):Leaching of Heavy Metals and Volatile Organic Compounds from MSW co-disposed with MSWI in Anaerobic Bioreactors
指導教授:羅煌木
指導教授(外文):Huang-Mu Lo
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:92
中文關鍵詞:重金屬揮發有機酸厭氧消化飛灰底灰
外文關鍵詞:MSWI bottom ashVOCsMSWI fly ashHeavy metalsAnaerobic digestion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究以厭氧消化槽(1.2公尺高、20公分直徑,工作反應體積(34公升)模擬掩埋場探討掩埋場添加飛灰、底灰不同比例對垃圾分解產氣量、滲出液中重金屬和揮發性有機物溶出之影響。垃圾主要由報紙(30%)、辦公室用紙(30%)、厚紙版(35%)、有機質廚餘組成(5%),破碎至均勻顆粒使小於1公分後將其和去離子水混合一起攪拌至含6%之總固體物,其有機組成與真實垃圾類似,C/N比約為30-40。覆土以飛灰(0、20、40、60、100 g/L)及底灰(0、100、200、400、600 g/L)不同比例分四層進行掩埋。灰燼取自台中市焚化爐,本研究發現適當的飛灰(20、40 g/L)與底灰(100、200、400、600 g/L)添加,有促進垃圾分解產氣量提昇潛勢。控制組、飛灰與底灰不同比例添加,其重金屬Cd、Cr、Cu、Pb、Ni與Zn溶出濃度分別為ND-0.184、0.003-0.598、ND-0.984、ND-0.822、ND-0.140與ND-1.587 mg L-1。其中Cd的溶出濃度有超過法規滲出液排放標準,顯示灰燼添加需特別注意重金屬溶出與其後續處理問題。滲出液中揮發性有機物控制組中可監測到甲苯與2-丁酮,分別為ND-9.00與ND-92.44 μg L-1,底灰添加組中可監測到甲苯、2-丁酮、2, 2二氯丙烷與氯甲烷,其溶出濃度分別為ND-5.52、ND-726.96、ND-1.57與ND-1.52 μg L-1,飛灰添加組則可監測到甲苯、2-丁酮、2, 2二氯丙烷、氯甲烷、二氯甲烷與溴氯甲烷,其溶出濃度分別為ND-318.32、ND-85.69、ND-178.63、ND-1.89、ND-290.44與ND-1.87 μg L-1,總計六種揮發性有機酸之溶出量控制組為ND-101.44 μg L-1,底灰添加組為ND-735.57 μg L-1,飛灰組為ND-876.84 μg L-1。研究結果指出,適量底灰或飛灰添加垃圾共同掩埋或消化,可促進產氣量之提昇,唯重金屬尤其是鎘與有機揮發酸或其它污染物之溶出後續處理,仍需加以注意,以避免可能產生之二次污染,影響人體健康與生態環境。
This study investigates the effects of different ratios addition of municipal solid waste (MSW) incinerator (MSWI) ashes on MSW biodegradation by anaerobic bioreactor simulating landfill site. Particularly, the gas production of MSW, heavy metals and volatile organic acids (VOCs) in leachate that might be affected by MSWI ashes addition are the major consideration. The size of anaerobic bioreactor is 1.2 m high and 0.2 m wide and the working volume is ~34 liter. Organic fraction of MSW (OFMSW) is mainly comprised of office paper (30%), newspaper (30%), carton paper (35%) and organic food (5%). They were shredded into pieces with diameter less than 1 cm and blended with deionized water to make a total solids (TS) of 6%. This OFMSW is similar to typical MSW with C/N ratio of around 30-40. Fly ash (0, 20, 40, 60, 100 g/L) or bottom ash (0, 100, 200, 400, 600 g/L) with different ratios were used as landfill cover by four layer arrangement. From the results, it is found that fly ash addition ratios of 20 and 40 g/L and bottom ash addition ratios of 100, 200, 400 and 600 g/L had the potential to increase the MSW biodegradation and gas production. Cd, Cr, Cu, Pb, Ni and Zn concentration in the leachate of control bioreactor, bottom ash added bioreactor and fly ash added bioreactor with different ashes ratios addition were found to be ND-0.184, 0.003-0.598, ND-0.984, ND-0.822, ND-0.140 and ND-1.587 mg L-1. Among them, Cd release was found to have the potential to exceed the environmental regulation standard. It indicates that subsequent leachate treatment of heavy metals needs to be carefully evaluated.
Except heavy metals, VOCs can be detected in leachate of anaerobic bioreactors. Toluene and 2-Butanone in the control bioreactor were measured to be ND-9.00 and ND-92.44 μg L-1 respectively. Toluene, 2-Butanone, 2, 2-Dichloropropane, and chloromethane were analyzed to be ND-5.52, ND-726.96, ND-1.57 and ND-1.52 μg L-1 in the bottom ash added bioreactors respectively. In addition, six VOCs of Toluene, 2-Butanone, 2, 2-Dichloropropane, Chloromethane, Dichloromethane and Bromochloromethane was detected to be ND-318.32, ND-85.69, ND-178.63, ND-1.89, ND-290.44, ND-1.87 μg L-1 in the fly ash added bioreactors, respectively. Total VOCs in leachates of control bioreactor, bottom ash and fly ash added bioreactors were found to be ND-101.44, ND-735.57 and ND-876.84 μg L-1 respectively. Results showed that proper addition of MSWI bottom and fly ash co-disposed or co-digested with MSW could enhance the gas production. However, heavy metals, VOCs and other micro-pollutants released from bioreactor or landfill need to be thoroughly assessed and carefully treated to prevent secondary pollution. Through integrated assessment and treatment, the effects of released pollutants on human health and ecological environment can be reduced.
總目錄
中文摘要 I
ABSTRACT III
誌謝 V
總目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
1.1研究背景與動機 1
1.2研究目的 3
第二章 文獻回顧 4
2.1國內垃圾處理現況 4
2.1.1垃圾處理 5
2.1.2 垃圾組成 8
2.2 衛生掩埋場 11
2.3 灰燼在衛生掩埋的利用 18
2.3.1都市垃圾灰燼來源 18
2.3.2焚化灰燼之特性 20
2.4衛生掩埋場滲出水的特性 27
2.4.1重金屬的特性 27
2.4.2揮發性有機物的特性 30
第三章 研究步驟與方法 34
3.1 實驗設計 34
3.2 實驗材料 36
3.3 實驗分析方法 39
3.3.1實驗流程 39
3.3.2滲出水重金屬分析 39
3.3.3 滲出水揮發性有機物分析 41
第四章、結果與討論 46
4.1基本參數分析 46
4.1.1垃圾基質與污泥基本參數分析結果 46
4.1.2飛灰、底灰金屬總量分析結果 47
4.2灰燼添加不同量之重金屬分析結果與趨勢圖 47
4.3 灰燼添加不同量之揮發性有機物分析結果與趨勢圖 61
第五章 結論與建議 76
5.1 結論 76
5.2 建議 76
參考文獻 77
附錄 83
表目錄
表2.1 民國84-95年垃圾組成變化 10
表2.2 不同粒徑底灰之化學特性 22
表2.3 底灰的基本物化特性 23
表2.4 垃圾掩埋場滲出水有機物之分佈和種類 31
表2.5 在pH7.0焚化爐飛灰中萃取之有機物 32
表3.1 污泥、基質、飛灰與底灰之金屬含量表 38
表3.2 ICP/OES各項操作參數 40
表3.3 化合物之方法偵測極限 43
圖目錄
圖2.1 垃圾處理場(廠)分布圖 7
圖2.2 垃圾分解過程階段特性 12
圖2.3 垃圾厭氧分解示意圖 14
圖2.4 pH>7時滲出水之濃度變化 29
圖3.1 厭氧生物反應槽之示意圖 36
圖3.2 實驗流程圖 39
圖4.1 基質與污泥基本參數分析表 46
圖4.2 飛灰、底灰金屬總量分析表 47
圖4.3 飛灰組Cd含量趨勢圖 48
圖4.4 飛灰組Cr含量趨勢圖 49
圖4.5 飛灰組Cu含量趨勢圖 50
圖4.6 飛灰組Zn含量趨勢圖 51
圖4.7 飛灰組Pb含量趨勢圖 52
圖4.8 飛灰組Ni含量趨勢圖 53
圖4.9 底灰組Cd含量趨勢圖 54
圖4.10 底灰組Cr含量趨勢圖 55
圖4.11 底灰組Cu含量趨勢圖 56
圖4.12 底灰組Zn含量趨勢圖 57
圖4.13 底灰組Pb含量趨勢圖 58
圖4.14 底灰組Ni含量趨勢圖 59
圖4.15 飛灰組Toluene含量趨勢圖 63
圖4.16 飛灰組2-Butanone含量趨勢圖 64
圖4.17 飛灰組2,2-dichloropropane含量趨勢圖 65
圖4.18 飛灰組Bromomethane含量趨勢圖 66
圖4.19 飛灰組Chloromethane含量趨勢圖 67
圖4.20 飛灰組Methylene chloride含量趨勢圖 68
圖4.21 飛灰組Bromochloro methane含量趨勢圖 69
圖4.22 底灰組Toluene含量趨勢圖 70
圖4.23 底灰組2-Butanone含量趨勢圖 71
圖4.24 底灰組2,2-dichloropropane含量趨勢圖 72
圖4.25 底灰組Bromomethane含量趨勢圖 73
圖4.26 底灰組Chloromethane含量趨勢圖 74
Barlaz, M. A., Ham, R. K., and Schaefer, D. M., “Mass-balance analysis of anaerobically decomposed refuse,” Journal of Environmental Engineering, pp. 1088-1102(1989).
Chiemchaisri, C., Chiemchaisri, W., and Kumar, S., “Solid waste characteristics and their relationship to gas production in tropical landfill,” Environ. Monit. Assess, Vol. 135, pp. 41-48(2007).
Christensen, T. H., Cossu, R., and Stegmamn, R., “Sanitary landfilling process,” Technology and Environmental Impact 1st Ed., Academic press, London, pp. 29-49(1989).
Chian, E. S. K., and Dewalle, F., “characterization of soluble organic matter in leachate’’ Environ. Sci. Technology, Vol. 11, NO. 2, pp. 158-163(1977).
Karashek, F. W., Charbonneau, G. M., Reuel, G.J., and Tong, H. Y., “Determination of organic compounds leached form municipal incinerator fly ash by water at different pH levels,’’ Anal. Chem., Vol. 59, pp. 1027-1031(1987).
Halin, C. E., Jason A., Nataward, S. H., Amal, R., Beydoun, D., and low, G., “Comparison between Acetic acid and landfill leachates for the leaching of Pb、Cd、As, and Cr from cementitious wastes,” Environ. Sci. Technol., Vol. 38, pp. 3977-3983(2004).
Wu, H. Y., and Ting, Y. P., “Metal extraction from municipal solid waste (MSW) incinerator fly ash—Chemical leaching and fungal bioleaching,” Enzyme and Microbial Technology, Vol. 38, pp. 839-847(2006).
Lema, J. M., Mendez, R., and Blazquez, R., “Characteristics of Landfill Leachates and Alternatives for their Treatment:A review,” Water, Air, and Soil Pollution, Vol. 40, pp. 223-250(1988).
Meima, J. A., Zomeren, A. V., and Comans, R. N. J., “Complexation of Cu with dissolved organic carbon in municipal soil waste lncinerator mottom ash leachates,’’ Environ. Sci. Technol., Vol. 33, pp. 1424-1429(1999).
Alben, K., “Gas chromatographic-Mass Spectrometric Analysis of chlorination effects on commercial coal-tra leachate,” anal. chem., Vol. 52, pp. 1825-1828(1980).
Kayhanian, M., and Hardy, S., “The impact of four design parameters on the performance of a high-solids anaerobic digestion of municipal solid waste for fuel gas production,” Environmental Technology, Vol. 15, pp. 557-567(1994).
Kendall, D. S., “Toxicity characteristic leaching procedure and Iron treatment of brass foundry waste,’’ Environ. Sci. Technol., Vol. 37, pp. 367-371(2003).
Lin, C. Y., “Effect of Heavy Metals on Acidogenesis in Anaegobic Digestion,” Water Research, Vol. 27, pp.147-152(1993).
Lo, H. M., “Metals behaviors of MSWI bottom ash co-digested Anaerobically with MSW,” Resources, Conservation & Recycling, Vol. 43, Issue 3, pp. 263-280(2005).
Relmhard, M., and Goodman, N. L., “Occurrence and distribution of organic chemicals in two landfill leachate plumes,’’ Environ. Sci. Technol., Vol. 18, pp. 953-961(1984).
Ontiveros, J. T., and Kosson, D. S., “Physical Properties and Chemical Species Distributions Within Municipal Waste Combuster Ashes,” Environmental Progress, Vol. 8, Issue 3 , pp. 200-210(1989).
Owen, A. O., Connor, R. G.., Paul, G.., and Young, L. Y., “Landfill Leachae: A Study of its Anaerobic Mineralization and Toxicity to Methanogenesis,” Arch. Environ. Contam. Toxical., Vol. 19, pp. 143-147(1990).
Parkin, G. F., and Owen, W. F., “Fundamentals of anaerobic digestion of wastewater sludges,” Journal of Environmental Engineering, pp. 867-920(1986).
Malviya, R., and Chaudhary, R., “Evaluation of leaching characteristics and environmental compatibility of solidified/stabilized industrial waste,” J. Mater. Cycles Waste Manag., Vol. 8, pp. 78-87(2006).
Sawell, S. E., Chandler, A. j., Eighmy, T. T., Hartlen, J., Hjehnar, O., Kosson, D., Vander, S. H. A., and Vehlow, J., “An international perspective on the characterization and management of residues from MSW incinerators,” Biomass Bioenergy, Vol. 9, pp. 377-386(1995).
Schroth B. K., and sposito G., “ Effect of landiff leachate organic acid on trace metal adsorption by Kaolinite,” Environ. Sci. Technol., Vol. 32, pp. 1404-1408(1998).
Speece, R. E., “Environmental reguirements for anaerobic digestion of biomass,” Advance in Solar Energy, Vol. 2, pp. 51-123(1985).
Wiles, C. C., “Municipal solid waste combustion ash: State-of-the-kno-Wledge,” J. of Hazardous Materials , pp. 325-344(1996)
Jang, Y. C., and Townsen, T. G., “Leaching of Lead from computer printed wire boards and cathode ray tubes municipal solid waste landfill leachates,’’ Environ. Sci. Technol., Vol. 37, pp. 4778-4784(2003).
Chris C.Y. Chan. and Donald W. Kirk., “Behaviour of metals under the
conditions of roasting MSW incinerator fly ash with chlorinating
agents,” Journal of Hazardous Materials B 64, pp. 75-89(1999).
行政院環保署,95年環保署公務統計報表。
行政院環境保護署網站,http://www.epa.gov.tw
吳慶龍,「焚化底灰粗粒徑替代道路基層材料之可行性探討」,碩士論文,淡江大學水資源及環境工程學系,臺北(2000)
李甘露,「添加有機汙泥對掩埋場覆土甲烷氧化行為之研究」,碩士論文,國立中興大學環境工程研究所,臺中(2001)。
李釗、江少鋒、郭文田,「都市垃圾焚化灰渣做為混凝土細骨材之可行性研究」,一般廢棄物焚化灰渣資源化技術與實務研討會,臺北,第91-112頁(1996)。
周明顯,臭味及揮發性有機物控制,復文書局,高雄(2007)。
柴浣蘭,「都市垃圾焚化灰渣掩埋特性及滲出水預測模式之研究」,碩士論文,淡江大學水資源及環境工程學系,臺北(2001)。
張光明,「城市垃圾厭氧產酸階段研究」,重慶環境科學,第58-63頁(2003)。
張祖恩,「台灣地區都市垃圾焚化灰渣物化組成即溶出特性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會,臺北(1996)。
張燕宗,「以類神經網路與灰色理論預測掩埋場添加灰燼氣體產量之研究」,碩士論文,朝陽科技大學環境與工程系,臺中(2007)。
張蕙蘭,「垃圾焚化底碴資源化之道路基層應用研究」,碩士論文,國立交通大學產業安全與防災學程碩士班,新竹(2007)。
陳國賢,「垃圾掩埋場沉陷行為之研究」,博士論文,國立台灣大學土木工程學研究所,臺北(2006)。
楊博清,「添加灰渣於掩埋場覆土甲烷氧化作用之研究」,碩士論文,國立中興大學環境工程研究所,臺中(2002)。
廖錦聰、徐文慶、張蕙蘭、黃契儒,「焚化灰渣資源化研究」,工業技術研究院,新竹(1996)。
趙永楠,「以動態/半動態溶出程序評估都市垃圾焚化底灰長期穩定特性之研究」,碩士論文,國立台灣大學環境工程學研究所,臺北(2003)。
劉廣青、鄭萬里、喬艷雲、侯允、董仁傑,「城市生活垃圾的厭氧消化處理」,2003國際農業生物環境與能源工程論文集,中國北京,第58-63頁(2003)。
謝錦松、黃正義,固體廢棄物處理,淑馨出版社,臺北(1993),。
羅煌木,「焚化爐底灰物化特性及掩埋場植生復育研究」,博士論文,國立中興大學水土保持研究所,臺中(2002)。
羅煌木、白子易、張忠吉、張傑、謝季穎、徐孝先,「灰燼添加垃圾共同掩埋金屬溶出模擬研究」,第21屆廢棄物處理技術研討會,臺中(2006)。
羅煌木、廖元隆,「都市固體廢棄物與焚化爐底灰共同厭氧消化之金屬行為研究」,朝陽科技大學環境與工程系,臺中(2004)。
羅煌木、廖元隆、傅袓營、楊朝全、鍾依靜、鍾益民,「垃圾掩埋場灰燼添加金屬溶出行為」,第20屆廢棄物處理技術研討會,桃園(2005)。
羅煌木、劉敏信、廖元隆、黃松瑞、詹益傑、孫少淇,「掩埋場灰燼添加對垃圾分解產氣之影響」,第20屆廢棄物處理技術研討會,桃園(2005)。
蘇明颢,「模擬厭氧消化反應槽添加焚化爐底灰/飛灰於市鎮固體廢棄物之菌群結構分析」,碩士論文, 國立中興大學環境工程研究所,臺中(2005)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊