(3.238.173.209) 您好!臺灣時間:2021/05/16 21:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:孫立明
研究生(外文):Li-ming Sun
論文名稱:利用超臨界流體去除鋼鐵業集塵灰中多環芳香烴“芘”之研究
論文名稱(外文):Using Supercritical Fluid Extraction to Remove Pyrene from EAF Dust in Steelmaking Industry
指導教授:劉敏信劉敏信引用關係
指導教授(外文):Min-Hsin Liu
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:156
中文關鍵詞:電弧爐集塵灰超臨界流體萃取界面活性劑
外文關鍵詞:SurfactantPyreneSupercritical fluid extractionEAF dust
相關次數:
  • 被引用被引用:3
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
本研究所使用之集塵灰來自臺灣中部電弧爐煉鋼廠空氣污染防治設備所收集之電弧爐集塵灰,依據其酸鹼值從中選取酸性、中性、鹼性三種集塵灰進行分析與探討,並於實驗室將其配置受芘污染之集塵灰。研究首先使用界面活性劑淋洗集塵灰,並以兩種震盪方式,水平式震盪與超音波震盪分別進行淋洗,當界面活性劑濃度達到7 CMC 時,其對三種集塵灰之批次萃取率均可達至30~40%左右。在超臨界流體萃取方面,當二氧化碳之溫度與壓力均達至臨界點時,超臨界流體已具備了萃取三種集塵灰中芘之能力,其萃取率均在80%以上,但是當修飾劑比例改變時,對含有較高有機質之酸性集塵灰之萃取率有較明顯之影響。當修飾劑比例添加由無增加至5%(v/v)時,其酸性集塵灰之芘萃取率從67.8%提升至74.7%。將集塵灰過篩後,將不同粒徑之集塵灰以固定溫度60℃、壓力100 bar、與不添加修飾劑之超臨界流體進行萃取,可以發現當粒徑介於小於0.074 mm 時,萃取率由70~80%降至50%~70%,但同樣溫度將壓力提高至300 bar時,集塵灰之各粒徑其萃取率均可達90%左右,因此當壓力提升至300 bar對萃取集塵灰之微小粒徑有所助益,顯然粒徑大小已不是影響萃取效率之因素。
In this research, three electric arc furnace (EAF) dusts were selected based on pH values, with slight acid, neutral, and alkaline, which were collected from the air pollution prevention and control equipment in steelmaking industry in central Taiwan. The dusts were spiked with pyrene prior to the study. When using surfactant washing process to remove pyrene from the dusts, two washing methods included horizontal shaking bath and ultrasonic shaking were conducted. Once the surfactant concentration reached to 7 times of critical micelle concentration, removal efficiency of batch washing three kinds of EAF dust was about 30~40%. In supercritical fluid extraction, when both temperature and pressure of carbon dioxide reached to critical point, supercritical fluid was proved with promising extraction of pyrene from three kinds of EAF dust, and extraction efficiencies were above to 80%, nevertheless when various percentage of modifier methanol was introduced to the extraction system, a significant difference of extraction efficiency was observed in slight acid dust which held higher organic matter. When modifier percentage increased from none to 5% (v/v), the extraction efficiencies of slight acid dust increased from 67.8% to 78.7%. The supercritical fluid extraction was also applied to various sizes of EAF dust, in the condition of 60oC and 100 bar with modifier addition, the data showed the extraction efficiency decreased from 70~80% to 50~70% when the particle size was less than 0.074 mm, but when the pressure was increased to 300 bar, all the extraction efficiencies were above 90% for various sizes of EAF dust. When the pressure was increased to 300 bar, the particle size was not the factor to affect the extraction efficiency.
總目錄
中文摘要 I
Abstract II
致謝 III
總目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究源起 1
1.2 研究目的 1
第二章 文獻回顧 2
2.1 鋼鐵工業概論 2
2.2 鋼鐵業電弧爐製程介紹 3
2.2.1 電弧爐集塵灰來源與有機污染物分析 6
2.2.2 多環芳香烴之物化性質 7
2.2.3 多環芳香烴之來源與形成機制 13
2.2.4 多環芳香烴之毒害性 16
2.3 界面活性劑種類及其物化性質 20
2.3.1 界面活性劑種類 20
2.3.2 界面活性劑基本物化性質 25
2.3.3 界面活性劑於土壤之機制 31
2.3.4 界面活性劑於污染控制之應用 32
2.4 超臨界流體概論 33
2.4.1 超臨界流體之特性 34
2.4.2 超臨界流體之應用 37
2.4.3 超臨界流體之熱動力學 38
2.4.4 超臨界流體萃取之機制 40
2.4.5 影響超臨界流體萃取之因素 44
2.4.6 超臨界流體萃取於污染控制之應用 47
第三章 材料與方法 50
3.1 實驗設備 50
3.2 實驗試劑 52
3.3 實驗方法 53
3.3.1 集塵灰基本特性分析方法 55
3.3.2 集塵灰多環芳香烴“芘”配製方法 57
3.3.3 集塵灰中多環芳香烴“芘”之萃取方法 57
3.3.4 界面活性劑臨界微胞濃度測定方法 58
3.3.5 多環芳香烴“芘”之分析方法 59
3.3.6 界面活性劑批次淋洗實驗方法 59
3.3.7 超臨界流體萃取實驗方法 61
3.3.8 數據整理統計分析方法 63
第四章 結果與討論 69
4.1 集塵灰背景與基本特性分析 69
4.1.1 鋼鐵業集塵灰背景分析結果 69
4.1.2 鋼鐵業集塵灰特性分析結果-元素分析儀 71
4.1.3 鋼鐵業集塵灰特性分析結果-感應耦合電漿發射光譜儀 72
4.1.4 鋼鐵業集塵灰特性分析結果- X光粉末繞射儀 73
4.1.5 鋼鐵業集塵灰特性分析結果-場發射掃描式電子顯微鏡 75
4.1.6 鋼鐵業集塵灰特性分析結果-X射線能量散佈光譜儀 78
4.2 集塵灰中多環芳香烴“芘”之萃取方法 80
4.2.1 水平式震盪萃取方式萃取結果 80
4.2.2 超音波震盪萃取方式萃取結果 81
4.2.3 水平式震盪與超音波震盪萃取方式萃取結果之比較 81
4.3 Triton X-100界面活性劑之臨界微胞濃度之測定結果 82
4.4 界面活性劑淋洗實驗結果 84
4.4.1 不同界面活性劑濃度淋洗酸性集塵灰之淋洗結果 84
4.4.2 不同界面活性劑濃度淋洗中性集塵灰之淋洗結果 89
4.4.3 不同界面活性劑濃度淋洗鹼性集塵灰之淋洗結果 94
4.4.4 不同濃度界面活性劑淋洗對三種集塵灰之淋洗結果之比較 99
4.5 超臨界流體萃取實驗結果 105
4.5.1 超臨界流體於不同溫度萃取集塵灰“芘”之結果 105
4.5.2 超臨界流體於不同壓力萃取集塵灰“芘”之結果 111
4.5.3 超臨界流體於不同比例甲醇萃取集塵灰“芘”之結果 116
4.5.4 超臨界流體於不同粒徑集塵灰萃取“芘”之結果 122
4.5.5 集塵灰特性對於超臨界流體萃取之影響 130
第五章 結論與建議 141
5.1 結論 141
5.1.1 界面活性劑淋洗實驗 141
5.1.2 超臨界流體萃取實驗 141
5.2 建議 142
參考文獻 143


圖目錄
圖2.1 電弧爐構造圖 3
圖2.2 電弧爐煉鋼冶煉流程圖 4
圖2.3 自由基生成PAHS之反應機制(一) 14
圖2.4 自由基生成PAHS之反應機制(二) 14
圖2.5 自由基生成PAHS之反應機制(三) 15
圖2.6 多環芳香烴活化位置 15
圖2.7 界面活性劑之構造 24
圖2.8 溶液性質與界面活性劑度關係圖 29
圖2.9 界面活性劑微胞示意圖 29
圖2.10 界面活性劑濃度與界面張力對污染物溶解濃度之關係 30
圖2.11 界面活性劑在油、水、界面活性劑不同HLB系統之變化 30
圖2.12 純物質之三相圖 34
圖2.13 超臨界二氧化碳之相變化圖 34
圖2.14 基質、分析物、超臨界流體之間相互作用圖 43
圖2.15 超臨界流體之壓力、溫度與密度關係 43
圖2.16 基質於超臨界流體擴散動力模式圖 44
圖2.17 二氧化碳於9.5 MPA時之物理性質變化 47
圖3.1 超臨界流體萃取儀 52
圖3.2 研究架構流程圖 54
圖3.3 界面活性劑淋洗實驗步驟 60
圖3.4 超臨界二氧化碳萃取實驗步驟 62
圖3.5 統計學中之F分配圖 66
圖4.1 集塵灰之粒徑分布圖 71
圖4.2 酸性集塵灰之X光粉末繞射儀分析結果 73
圖4.3 中性集塵灰之X光粉末繞射儀分析結果 74
圖4.4 鹼性集塵灰之X光粉末繞射儀分析結果 74
圖4.5 酸性集塵灰表面形貌圖(放大倍率30,000倍) 75
圖4.6 中性集塵灰表面形貌圖(放大倍率30,000倍) 76
圖4.7 鹼性集塵灰表面形貌圖(放大倍率30,000倍) 76
圖4.8 酸性集塵灰表面形貌圖(放大倍率50,000倍) 77
圖4.9 中性集塵灰表面形貌圖(放大倍率50,000倍) 77
圖4.10 鹼性集塵灰表面形貌圖(放大倍率50,000倍) 78
圖4.11 酸性集塵灰之EDS圖 79
圖4.12 中性集塵灰之EDS圖 79
圖4.13 鹼性集塵灰之EDS圖 79
圖4.14 界面活性劑濃度與表面張力之變化圖 83
圖4.15 界面活性劑濃度與表面張力之線性迴歸圖 83
圖4.16 不同濃度界面活性劑以水平式震盪淋洗酸性集塵灰之去除結果 86
圖4.17 不同濃度界面活性劑以超音波震盪淋洗酸性集塵灰之去除結果 86
圖4.18 不同濃度界面活性劑以水平式震盪淋洗中性集塵灰之去除結果 91
圖4.19不同濃度界面活性劑以超音波震盪淋洗中性集塵灰之去除結果 91
圖4.20 不同濃度界面活性劑以水平式震盪淋洗鹼性集塵灰之去除結果 96
圖4.21 不同濃度界面活性劑以超音波震盪淋洗鹼性集塵灰之去除結果 96
圖4.22 不同濃度界面活性劑以水平式震盪淋洗三種集塵灰之去除結果 100
圖4.23 不同濃度界面活性劑以超音波震盪淋洗三種集塵灰之去除結果 100
圖4.24 超臨界流體於不同溫度萃取酸性集塵灰之結果 107
圖4.25 超臨界流體於不同溫度萃取中性集塵灰之結果 107
圖4.26 超臨界流體於不同溫度萃取鹼性集塵灰之結果 108
圖4.27 超臨界流體於不同壓力萃取酸性集塵灰之結果 112
圖4.28 超臨界流體於不同壓力萃取中性集塵灰之結果 112
圖4.29 超臨界流體於不同壓力萃取鹼性集塵灰之結果 113
圖4.30 超臨界流體於不同比例甲醇修飾劑萃取酸性集塵灰之結果 118
圖4.31 超臨界流體於不同比例甲醇修飾劑萃取中性集塵灰之結果 118
圖4.32 超臨界流體於不同比例甲醇修飾劑萃取鹼性集塵灰之結果 119
圖4.33 超臨界流體於不同粒徑之酸性集塵灰萃取之結果(100 BAR) 124
圖4.34 超臨界流體於不同粒徑之中性集塵灰萃取之結果(100 BAR) 124
圖4.35 超臨界流體於不同粒徑之鹼性集塵灰萃取之結果(100 BAR) 125
圖4.36 超臨界流體於不同粒徑之酸性集塵灰萃取之結果(300 BAR) 125
圖4.37 超臨界流體於不同粒徑之中性集塵灰萃取之結果(300 BAR) 126
圖4.38 超臨界流體於不同粒徑之鹼性集塵灰萃取之結果(300 BAR) 126
圖4.39 超臨界流體於不同溫度萃取酸性、中性、鹼性三種集塵灰之萃取結果 133
圖4.40 超臨界流體於不同壓力萃取酸性、中性、鹼性三種集塵灰之萃取結果 133
圖4.41 超臨界流體於不同甲醇修飾劑比例萃取酸性、中性、鹼性三種集塵灰之萃取結果 134
圖4.42 超臨界流體於不同集塵灰粒徑萃取酸性、中性、鹼性三種集塵灰之萃取效率影響(100 BAR) 134
圖4.43 超臨界流體於不同集塵灰粒徑萃取酸性、中性、鹼性三種集塵灰之萃取效率影響(300 BAR) 135
圖4.44 100 BAR與300 BAR之超臨界流體於不同集塵灰粒徑萃取酸性、中性、鹼性三種集塵灰之萃取效率影響 135


表目錄
表2.1 21種PAHS分子式 9
表2.2 21種PAHS物理性質與親電性 11
表2.3 各PAHS之TEF一覽表 19
表2.4 超臨界流體之性質 36
表2.5 常見超臨界流體之臨界參數與溶解參數 36
表3.1 HPLC分析多環芳香烴“芘”之分析條件 59
表3.2 超臨界二氧化碳於各溫度、壓力時之密度 63
表4.1 集塵灰之基本特性分析 70
表4.2 元素分析儀分析結果 72
表4.3 集塵灰感應耦合電漿發射光譜儀分析結果(一) 72
表4.4 集塵灰感應耦合電漿發射光譜儀分析結果(二) 72
表4.5 集塵灰感應耦合電漿發射光譜儀分析結果(三) 73
表4.6 水平式震盪萃取方式萃取結果 80
表4.7 超音波震盪萃取方式萃取結果 81
表4.8 水平式震盪與超音波震盪萃取之回收率比較 82
表4.9 各界面活性劑濃度所測之表面張力結果 82
表4.10 不同濃度界面活性劑以水平式震盪淋洗酸性集塵灰之去除效率影響 87
表4.11 不同濃度界面活性劑以超音波震盪淋洗酸性集塵灰之去除效率影響 88
表4.12 不同濃度界面活性劑以水平式震盪淋洗中性集塵灰之去除效率影響 92
表4.13 不同濃度界面活性劑以超音波震盪淋洗中性集塵灰之去除效率影響 93
表4.14 不同濃度界面活性劑以水平式震盪淋洗鹼性集塵灰之去除效率影響 97
表4.15 不同濃度界面活性劑以超音波震盪淋洗鹼性集塵灰之去除效率影響 98
表4.16 不同濃度界面活性劑以水平式震盪淋洗三種集塵灰之去除效率影響 101
表4.17 不同濃度界面活性劑以超音波震盪淋洗三種集塵灰之去除效率影響 103
表4.18 超臨界流體於不同溫度萃取酸性集塵灰之萃取效率影響 109
表4.19 超臨界流體於不同溫度萃取中性集塵灰之萃取效率影響 109
表4.20 超臨界流體於不同溫度萃取鹼性集塵灰之萃取效率影響 110
表4.21 超臨界流體於不同壓力萃取酸性集塵灰之萃取效率影響 114
表4.22 超臨界流體於不同壓力萃取中性集塵灰之萃取效率影響 114
表4.23 超臨界流體於不同壓力萃取鹼性集塵灰之萃取效率影響 115
表4.24 超臨界流體於不同比例甲醇修飾劑萃取酸性集塵灰之萃取效率影響 120
表4.25 超臨界流體於不同比例甲醇修飾劑萃取中性集塵灰之萃取效率影響 120
表4.26 超臨界流體於不同比例甲醇修飾劑萃取鹼性集塵灰之萃取效率影響 121
表4.27 超臨界流體於不同粒徑之酸性集塵灰其萃取效率影響(100 BAR) 127
表4.28 超臨界流體於不同粒徑之中性集塵灰其萃取效率影響(100 BAR) 127
表4.29 超臨界流體於不同粒徑之鹼性集塵灰其萃取效率影響(100 BAR) 128
表4.30 超臨界流體於不同粒徑之酸性集塵灰其萃取效率影響(300 BAR) 128
表4.31 超臨界流體於不同粒徑之中性集塵灰其萃取效率影響(300 BAR) 129
表4.32 超臨界流體於不同粒徑之鹼性集塵灰其萃取效率影響(300 BAR) 129
表4.33 超臨界流體於不同溫度萃取酸性、中性、鹼性三種集塵灰之萃取效率影響 136
表4.34 超臨界流體於不同壓力萃取酸性、中性、鹼性三種集塵灰之萃取效率影響 137
表4.35 超臨界流體於不同甲醇修飾劑比例萃取酸性、中性、鹼性三種集塵灰之萃取效率影響 138
表4.36 超臨界流體於不同集塵灰粒徑萃取酸性、中性、鹼性三種集塵灰之萃取效率影響(100 BAR) 139
表4.37 超臨界流體於不同集塵灰粒徑萃取酸性、中性、鹼性三種集塵灰之萃取效率影響(300 BAR) 140
1.Abraham, M. A., and Sunol, A. K., “Supercritical Fluids: Extraction and Pollution Prevention,” American Chemical Society, Washington, DC.(1997).
2.Ajzenberg, N., Trabelsi, F., and Recasens, F., “What’s New in Industrial Polymerization with Supercritical Solvents? A Short Review,” Chemical Engineering and Technology, Vol. 23, pp.829-839(2000).
3.Anitescu, G., and Tavlarides, L. L., “Supercritical Extraction of Contaminants from Soils and Sediments,” Journal of Supercritical Fluids, Vol. 38, No. 2, pp.167-180(2006).
4.Aronstein B. N., Calvillo, Y. M., and Alexander M., “Effect of Surfactants at Low Concentrations on the Desorption and Biodegradation of Sorbed aromatic compounds in soil,” Environmental Science and Technology, Vol. 25, pp.1728-1731(1991).
5.Baek, S. O., Field, R. A., Goldstone, M. E., Kirk, P. W., Lester, J. N., and Perry, R., “A Review of Atmospheric Polycyclic Aromatic Hydrocarbons: Source, Fate and Behavior,” Water, Air, and Soil Pollution, Vol. 60, pp.279-300(1991).
6.Barnabas, I. J., Dean, J. R., Hitchen, S. M., and Owen, S. P., “Supercritical Fluid Extraction of Organochlorine Pesticides from an Aqueous Matrix,” Journal of Chromatographic Science, Vol. 32, No. 12, pp.547-551(1994).
7.Bartok , W., and Sarofim, A. F., Fossil Fuel Combustion:A Source Book, John Wiley & Sons, Inc, New York(1991).
8.Behymer, T. D., and Hites, R. A., “Photolysis of Polycyclic Aromatic Hydrocarbons Adsorbed on Simulated Atmospheric Particulates,” Environmental Science and Technology, Vol. 19, No. 10, pp.1004-1006(1985).
9.Berdeaux, O., De Alencastro, L. F., Grandjean, D., and Tarradellas, J., “Supercritical Fluid Extraction of Sulfonylurea Herbicides in Soil Samples,” International Journal of Environmental Analytical Chemistry, Vol. 56, No. 2, pp.109-117(1994).
10.Bittner, J. D., and Howard, J. B., In Particulate Carban: Formation during Combuation, Plenum, New York(1981).
11.Bjørseth, A., and Ramdahl, T., Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, Inc., New York and Basel(1983).
12.Brunner, E., Hültenschmidt, W., and Schlichthärle, G., “Fluid Mixtures at High Pressures IV. Isothermal Phase Equilibria in Binary Mixtures Consisting of (Methanol + Hydrogen or Nitrogen or Methane or Carbon Monoxide or Carbon Dioxide),” Journal of Chemical Thermodynamics, Vol. 19, No. 3, pp.273-291(1987).
13.Brunner, G., “Supercritical Fluids: Technology and Application to Food Processing,” Journal of Food Engineering, Vol. 67, pp.21-33(2005).
14.Camel, V., Tambute, A., and Caude, M., “Analytical-Scale Supercritical Fluid Extraction: a Promising Technique for the Determination of Pollutants in Environmental Matrices,” Journal of Chromatography A, Vol. 642, No. 1-2, pp. 263-281(1993).
15.Cook J. W., Hewett, C. L., and Hieger, I., “The Isolation of Cancer-Producing Hydrocarbon from Coal Tar, PART I, II and III,” Journal of Chemical Society, pp.395-421(1933).
16.Cope, V. W., and Kalkwarf, D. R., “Photoxidation of Selected Polycyclic Aromatic Hydrocarbons and Pyrenequinones Coated on Glass Surfaces,” Environmental Science and Technology, Vol. 21, No. 7, pp.643-648(1987).
17.D’Anna, A., and Violi, A., “A kinetic Model for the Formation of Aromatic Hydrocarbons in Premixed Laminar Flames,” Proceedings of the Combustion Institute, Vol. 27, No. 1, pp.425-433(1998).
18.Davis, C. S., Fellin, P., and Otson, R., Toxic Air Pollution, Lewis Publisher, Inc., Michigan, USA(1987).
19.Dias, J. R., Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid Hydrocarbons, Elsevier, Amsterdam(1987).
20.Ditoro, D. M., Dodge, L. J., and Hand, V. C., “A Model for Anionic Surfactant Sorption,” Environmental Science and Technology, Vol. 24, pp.1013-1020(1990).
21.Ebert, L. B., Polynuclear Aromatic Compounds, American Chemical Society, Washington, DC.(1988).
22.Edwards, D. A., Adeel, Z., and Luthy, R. G., “Distribution of Nonionic Surfactant and Phenanthrene in a Sediment/Aqueous System,” Environmental Science and Technology, Vol. 28, No. 8, pp.1500-1560(1994).
23.Edwards, D. A., Liu, Z., and Luthy, R. G., “Interaction Between Nonionic Surfactant Monomers, Hydrophobic Organic Compounds and Soil,” Water Science and Technology, Vol. 26, No.1-2, pp.147-158(1992).
24.Elektorowicz, M., El-Sadi, H., Lin, J., and Ayadat, T., “Effect of Supercritical Fluid Extraction Parameters and Clay Properties on the Efficiency of Phenanthrene Extraction,” Journal of Colloid and Interface Science, Vol. 309, pp.445-452(2007).
25.Field, J. A., Miller, D. J., Field, T. M., Hawthorne, S. B., and Giger, W., “Quantitative Determination of Sulfonated Aliphatic and Aromatic Surfactants in Sewage Sludge by Ion-Pair/Supercritical Fluid Extraction and Derivatization gas chromatography/mass spectrometry”, Analytical Chemistry, Vol.64, pp.3161-3167(1992).
26.Francis, A., “Solvent Extraction with Liquid Carbon Dioxide,” Industrial and Engineering Chemistry, Vol. 47, No. 2, pp.230-233(1955).
27.Frenklach, M., and J. Warnatz, “Detailed Modeling of PAH Profiles in a Sooting Low-Presure Acetylene Flame,” Combustion Science and Technology, Vol. 51, pp.265-283(1987).
28.Gábor, K. H., and Wandruszka, R., “Decontamination of Oil-Polluted Soil by Cloud Point Extraction,” Talanta, Vol. 42, No. 1, pp.83-88(1995).
29.Giddings, J. C., Myers. M. N., McLaren, L., and Keller, R. A., “High Pressure Gas Chromatography of Nonvolatile Species,” Science, Vol. 162, No. 849, pp.67-73(1968).
30.Giolando, S. T., Rapaport, R. A., Larson, R. J., Federle, T. W., Stalmans M., and Masscheleyn, P., “Environmental Fate and Effects of DEEDMAC: A New Rapidly Biodegradable Cationic Surfactant for Use in Fabric Softeners,” Chemosphere, Vol. 30, No. 6, pp.1067-1083(1995).
31.Grimmer, G., “Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons,” Environmental Science and Technology, Vol. 24, pp.1581-1588(1983).
32.Hawthorne S. B., and Miller D. J., “Direct Comparison of Soxhlet and Low- and High-Temperature Supercritical CO2 Extraction Efficiencies of Organics from Environmental Solids,” Analytical Chemistry, Vol. 66, No. 22, pp.4005-4012(1994).
33.Hawthorne, S. B., and Miller D. J., “Quantitative Extraction of Linear Alkylbenzenesulfonates Using Supercritical Carbon Dioxide and a Simple Device for Adding Modifiers,” Journal of Chromatography A, Vol. 541, pp.185-194(1991).
34.Hawthorne, S. B., and Miller, D. J., “Extraction and Recovery of Polycyclic Aromatic Hydrocarbons from Environmental Solids Using Supercritical Fluids,” Analytical Chemistry,Vol. 59, No. 13, pp.1705-1708(1987).
35.Hawthorne, S. B., Langenfeld, J. J., Miller, D. J., and Burford, M.D., “Comparison of Supercritical Chlorodifluoromethane, Nitrous Oxide, and Carbon Dioxide for the Extraction of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons,” Analytical Chemistry, Vol. 64, No. 14, pp.1614-1622(1992).
36.He, S., Jiang, P. X., Xu, Y. J., Shi, R. F., Kim, W. S., and Jackson, J. D., “A Computational Study of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Mini Tube,” International Journal of Thermal Sciences, Vol. 44, No.6, pp.521–530(2005).
37.Hedrick, J. L., and Taylor, L. T., “Direct Supercritical Fluid Extraction of Nitrogenous Bases from Aqueous Solution,” Journal of High ResolutionChromatography, Vol. 15, No. 3, pp. 151-154(1992).
38.Herrero, M., Cifuentes, A., and Ibañez, E., “Sub- and Supercritical Fluid Extraction of Functional Ingredients from Different Natural Sources: Plants, Food-by-Products, Algae and Microalgae A review,” Food Chemistry, Vol. 98, pp.136-148(2006).
39.Hiemenz, P. C., and Rajagopalan, R., Principles of Colloid and Surface Chemistry, 3rd ed., Marcel Dekker, Inc., New York., U.S.A.(1997).
40.Hollender, J., Shneine, J., Dott, W., Heinzel, M., Hagemann, H. W., and Götz, G. K. E., “Extraction of Polycyclic Aromatic Hydrocarbons from Polluted Soils with Binary and Ternary Supercritical Phases,” Journal of Chromatography A, Vol. 776, No. 2, pp.233-243(1997).
41.Jenneskens, L. W., Sarobe, M., and Zwikker, J. W., “Thermal Generation and (inter)Conversion of (multi) Cyclopenta-Fused Polycyclic Aromatic Hydrocarbons,” Pure and Applied Chemistry, Vol. 68, No. 2, pp.219-225(1996).
42.Kalberlah, F., Frijus, P. N., and Hassauer, M., “Toxicological Criteria for the Risk Assessment of Polycyclic Aromatic Hydrocarbons in Existing Chemical. Part 1: the Use of Equivalent Factors,” Altlasten-Spektrum, Vol. 5, pp.231-237(1995).
43.Karcher, W., “Reference Materials for the Analysis of Polycyclic Aromatic Compounds,” Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, Inc., New York(1983).
44.Kennaway, E. L., and Hieger, I., “Carcinogenic Substance and Fluorescence Spectra,” British Medical Journal, Vol. 1, pp.1044-1046(1930).
45.Kenneth, E. C., “Review of New Electric Arc Furnace Technologies,” Iron and Steel Engineer, Vol. 60, No. 10, pp.45-47(1983).
46.Kevin, M., Scholsky, “Polymerization Reactions at High Pressure and Supercritical Conditions,” Journal of Supercritical Fluids, Vol. 6, No. 2, pp.103-127(1993).
47.Kile, D. E., and Chiou, C. T., “Water Solubility Enhancements of DDT and Trichlorobenzene by Some Surfactants Below and Above the Critical Micelle Concentration,” Environmental Science and Technology, Vol. 23, No.7, pp.832-838(1989).
48.Kishida, T., Yuasa, G., and Shiina, K., “Energy Saving Technology of Electric Furnace Steelmaking in Japan,” SEAISI Quarterly, pp. 48-50(1987).
49.Knaebel, D. B., Federle, T. W., and Vestal, J. R., “Mieralisation of Linear Alkylbenzene Sulfonate (LAS)and Linear Alcohol Ethoxylate (LAE) in 11 Contrasting Soils,” Environmental Toxicology and Chemistry, Vol. 9, No. 8, pp.981-988(1990).
50.Kuhnt, G., “Behaviour and Fate of Surfactants in Soil,” Environmental Toxicology and Chemistry, Vol. 12, pp.1813-1820(1993).
51.Laha S. and Luthy R. G., “Inhibition of Phenanthrene Mineralization by Nonionic Surfactants in Soil-Water Systems,” Environmental Science and Technology, Vol. 25, No. 11, pp.1920-1930(1991).
52.Langenfeld, J. J., Hawthorne, S. B., and Miller, D. J., “Method for Determining the Density of Pure and Modified Supercritical Fluids,” Analytical Chemistry, Vol. 64, No.19, pp.2263-2266(1992).
53.Langenfeld, J. J., Hawthorne, S. B., Miller, D. J., and Pawliszyn, J., “Role of Modifiers for Analytical-Scale Supercritical Fluid Extraction of Environmental Samples,” Analytical Chemistry, Vol. 66, No. 6, pp.909-916(1994).
54.Langenfeld, J. J., Hawthorne, S. B., Miller, D. J., and Pawliszyn, J., “Effects of Temperature and Pressure on Supercritical Fluid Extraction Efficiencies of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls,” Analytical Chemistry, Vol. 65, No. 4, pp.338-344(1993).
55.Langenfeld, J. J., Hawthorne, S. B., Miller, D. J., and Pawlyszyn, J., “Role of Modifiers for Analytical-Scale Supercritical Fluid Extraction of Environmental Samples,” Analytical Chemistry, Vol. 66, No. 6, pp.909-916(1994).
56.Lee, M. L., Novotny, M. V., and Bartie, K. D., “Analytical Chemistry of Polycyclic Aromatic Hydrocarbons,” Academic Press, New York(1981).
57.Lowe, D., Kueper B., Pitts M., Wyatt K., Simpkin T., and Sale T., Technology practices manual for surfactant and cosolvents, pp.4-6(1997).
58.Luque de Castro, M. D. and Tena, M. T., “Strategies for Supercritical Fluid Extraction of Polar and Ionic Compounds,” Trends in Analytical Chemistry, Vol. 15, No. 1, pp. 32-37(1996).
59.Malcolm, H. M., and Dobson, S., “The Calculation of an Environmental Assessment Level (EAL) for Atmospheric PAHs Using Relative Potencies,” Department of the Environment, London, UK, pp.34-46(1994).
60.Mann, M. J. and Groenendijk, E., “The First Full-Scale Soil Washing Project in the USA,” Environmental Progress, Vol. 15, pp.108-111(1996).
61.Marr, R., and Gamse, T., “Use of Supercritical Fluid for Different Processes Including New Developments - a Review,” Chemical Engineering and Processing, Vol. 39, pp.19-28(2000).
62.Masclet, P., Mouvier, G., and Nikolaou, K., “Relative Decay Index and Sources of Polycyclic Aromatic Hydrocarbons,” Atmospheric Environment, Vol. 20, pp.439-445(1986).
63.McClure, P., and Schoeny, R., “Evaluation of a Component Based Relative Potency Approach to Cancer Risk Assessment for Exposure to PAH,” Paper Presented at Fifteen International Symposium on Polycyclic Aromatic Compounds: Chemistry, Biology and Environmental Impact, Belgirate, Italy, p.161(1995).
64.McHugh, M. A., and Krukonis V. J., Supercritical Fluid Extractio: Principle and Practice, 2nd ed., Butterworth-Heinemann, Boston(1994).
65.Menzie, C. A., Potocki, B. B., and Santodonato, J., “Exposure to Carcinogenic PAHs in the Environment,” Environmental Science and Technology, Vol. 26, pp.1278-1284(1992).
66.Mezie, C. A., and Potocki, B. B., “Exposure to Carcinogenic PAHs in the Environment,” Environment Science and Technology, Vol. 26, No. 7, pp.1278-1284(1992).
67.Mikhail S. A., Turcotte A. M., and Aota, J., “Thermoanalytical Study of EAF dust and its Vitrification product,” Thermochimica Acta, Vol. 287, No. 1, pp.71-79(1996).
68.Möckel, H. J., Welter, G., and Melzer, H., “Correlation Between Reversed-Phase Retention and Solute Molecular Surface Type and Area: I. Theoretical Outlines and Retention of Various Hydrocarbon Classes,” Journal of Chromatography A, Vol. 388, pp.255-266(1987).
69.Monarca, S., Pasquini, R., Scassellati, G., Savino, A., Bauleo, F. A., and Angeli, G., “Environmental Monitoring of Mutagenic/Carcinogenic Hazards During Road Paving Operation with Bitumens.” International Archives of Occupational and Environmental Health, Vol. 59, No. 4, pp.393-402(1987).
70.Muller, P., “Scientific Criteria Document for Multimedia Standards Development Polycyclic Aromatic Hydrocarbons; Part 1: Hazard Identification and Doseresponse Assessment,” Standard Development Branch, Ontario Ministry of Environment and Energy, Ontario, CN(1997).
71.Nadon, L., and Siemiatycki, J., “Cancer Risk Due to Occupational Exposure to Polycyclic Aromatic Hydrocarbons,” American Journal of Industrial Medicine, Vol. 28, pp.303-324(1995).
72.Nisbet, C., and LaGcy, P., “Toxic Equivalency Factors for Polycyclic Aromatic Hydrocarbons,” Reg Toxicol Pharmacol, Vol. 16, pp.290-300(1992).
73.Pawliszyn J., “Kinetic Model of Supercritical Fluid Extraction,” Journal of Chromatographic Science, Vol. 31, No. 1, pp.31-37(1993).
74.Peng, D. Y., and Robinson,D. B., “New Two-Constant Equation of State,” Industrial and Engineering Chemistry, Fundamentals, Vol. 15, pp.59-64(1976).
75.Pimentel, G. C., and McClellan, A. L., The Hydrogen Bond, Freeman, San Francisco(1960).
76.Pott, F., “Pyrolyseabgase PAH, Lungkrebsrisk-Daten Und Bewertung (in German),” STAUB-Reinhalt Luft, Vol. 45, No. 7, pp.369-379(1985).
77.Pott, P., “Chirurgical Observations Relative to the Cataract, the Polypus of the Nose, the Cancer of the Scrotum, the Different kinds of Ruptures, and the Mortification of Toes and Feet, Hawes, W Clarke, and R Collins,” London(1775).
78.Randall, L. G., “The Present Status of Dense (Supercritical) Gas Extraction and Dense gas chromatography: Impetus for DGC/MS Development,” Separation Science and Technology, Vol. 17, No. 1, pp.1-118(1982).
79.Reighard, T. S., Lee, S. T., and Olesik, S. V., “Determination of Methanol/CO2 and Acetonitrile/CO2 Vapor–Liquid Phase Equilibria Using a Variable-Volume View Cell,” Fluid Phase Equilibria, Vol. 123, No. 1-2, pp.215-230(1996).
80.Reindl, S., and Hofler, F., “Optimization of the Parameters in Supercritical Fluid Extraction of Polynuclear Aromatic Hydrocarbons from Soil Samples,” Analytical Chemistry, Vol. 66, No. 11, pp.1808-1816(1994).
81.Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L, Avdalovic, N. and Pohl, C., “Accelerated Solvent Extraction: A Technique for Sample Preparation,” Analytical Chemistry, Vol. 68, No. 6, pp.1033-1039(1996).
82.Rodrics J. V., Brett S. M., and Wrenn G. C., “Significant Risk Decisions in Federal Regulatory Agencies,” Regul Toxicol Parmocol, Vol. 7, pp.307-320(1987).
83.Roselius, W., Vitzthum, O., and Hubert, P., “Method of Extracting Coffee Oil Containing Aroma Constituents from Roasted Coffee,” U. S. Patent 4,328,255(1982).
84.Rosen, M. J., Surfactants and Interfacial Phenomena, John Wiley and Sons, Inc., New York (1988).
85.Salgın, U., Yıldız, N., Köroğlu, F., and Çalımlı, A., “A Parametric Study of Phenolic Compounds Desorption Performance from Organobentonite by Supercritical Fluids,” Journal of Supercritical Fluids, Vol. 39 No. 3, pp.296-303(2007).
86.Santella, R. M., Gammon, M. D., Zhang, Y. J., Motykiewicz, G., Young, T. L., Hayes, S. C., Terry, M. B., Schoenberg, J. B., Brinton, L. A., Bose, S., Teitelbaum, S. L., and Hibshoosh, H., “Immunohistochemical Analysis of Polycyclic Aromatic Hydrocarbon-DNA Adducts in Breast Tumor Tissue,” Cancer Letters, Vol. 154, pp.143-149(2000).
87.Shiau Bor-Jier , Sabatini D. A., and Harwell J. H., “Solubilization and Microemulsification of Chlorinated Solvents Using Direct Food Additive(edible) Surfactants,” Ground Water, Vol. 32, No. 4, pp.561-569(1994).
88.Sócrates A., Maríz A. R., Luis B. G., and Gastón E., “The PMO Method for Analysis of Structural Features of Polycyclic Aromatic Hydrocarbon Relevant to Asphalts,” Fuel, Vol. 75, No. 9, pp.1139-1144(1996).
89.Stinson, M. K., Skovronek, H. S., and Ellis, W. D., “EPA SITE Demonstration of the BioTrol Soil Washing Process,” Journal of the Air and Waste Management Association, Vol. 42, pp.96-103(1992).
90.Tahir, S., Alenka, R. M., Štefica, C. S., Vjera, N. R., and Monika, J., “Characterization of Steel Mill Electric-Arc Furnace Dust,” Journal Haradous Materails, Vol.109, No.1-3, pp.59-70(2004).
91.Tang, P. H., and Ho, J.S., “Liquid-Solid Disk Extraction Followed by Supercritical Fluid Elution and Gas Chromatography of Phenols from Water,” Journal of High Resolution Chromatography, Vol. 17, No.7, pp. 509-518(1994).
92.Tuominen, J., Salomass, S., Pysalo, H., Skytta, E., Tikkanen, L., Nurmela, T., and Sorsa, M., “Polynuclear Aromatic Hydrocarbons and Genotoxicity in Particulate and Vapor Phases of Ambient Air: Effect of Traffic Season and Meteorological Conditions,” Environmental Science and Technology, Vol. 22, pp.1228-1234(1988).
93.USEPA, “Health Effects Assessment for Polycyclic Aromatic Hydrocarbons (PAHs),” Office of Health and Environmental Assessment, US Environmental Protection Agency, Washington, DC., EPA/549/1-86-013(1984).
94.USEPA., “Locating and Estimating Air Emission from Sources of Polycyclic Organic Matter(POM),” US Environmental Protection Agency, Washington, DC., EPA/45014/84-007(1987).
95.VanRooij, J. G. M., Bodelier-Bade, M. M., and Jongeneeien, F. J., “Estimation of Individual Dermal and Respiratory Uptake of Polycyclic Aromatic Hydrocarbons in 12 Coke Oven Workers,” British Journal of Industrial Medicine, Vol. 50, pp.623-632(1993).
96.VanRooij, J. G. M., Bodelier-Bade, M. M., Hopmans, P. J., and Jongeneelen, F. J., “Reduction of Urinary 1-Hydrocarbons Due to Improved Hygienic Skin Protective Measures,” Annals of Occupational Hygiene, Vol. 38, pp.247-256(1994).
97.Waters, J., Holt, M. S., and Matthijs, E., “Fate of LAS in Sludgeamended Soils,” Tenside Surfactants Detergents, Vol. 26, pp.129-135(1989).
98.Waters, J., Kleiser, H. H., How, M. J., Barrett, M. D., Birch, R. R., Fletcher R. J., Haigh, S. D., Hales, S. G., Marshall, S. J., and Pestell, T. C., “A New Rinse Conditioner Active with Improved Environmental Properties,” Tenside Surfactant Detergents, Vol. 28, pp.460-468(1991).
99.Yang, Y., Gharaibeh, A., Hawthorne, S. B., and Miller, D. J., “Combined Temperature/Modifier Effects on Supercritical CO2 Extraction Efficiencies of Polycyclic Aromatic Hydrocarbons from Environmental Samples,” Analytical Chemistry, Vol. 67, No. 3, pp.641-646(1995).
100.Yang, Y., Gharaibeh, A., Hawthrone, S. B., and Miller, D. J., “Combined Temperature/Modifier Effects on Supercritical CO2 Extraction Efficiencies of Polycyclic Aromatic Hydrocarbons from Environmental Samples,” Analytical Chemistry, Vol. 67, No. 3, pp.641-646(1995).
101.Yu, J. J., “Removal of Organophosphate Pesticides from Wastewater by Supercritical Carbon Dioxide Extraction,” Water Research,Vol. 36, No. 4, pp.1095-1101(2002).
102.Zandere, M., Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, Inc, 1985
103.刈米孝夫,界面活性劑的原理與應用,高立圖書有限公司,台北(1993)。
104.方湜惠,「超臨界CO2萃取移除廢水中重金屬之高級淨水技術」,碩士論文,逢甲大學環境工程與科學研究所,台中(2002)。
105.朱應波,直流電弧爐煉鋼技術,冶金工業出版社,北京(1997)。
106.行政院勞工委員會勞工安全衛生研究所,工業燻煙操作安全,台北(2000)。
107.李秀霞、張傑明,「土壤復育技術:超臨界流體萃取實驗之研究」,化工,第44卷,第3期(1997)。
108.李俊璋 、蕭安凱,「石化工業區附近大氣中揮發性有機物質特徵成分與致突變關係之研究」,第十三屆空氣污染控制技術研討會論文集,台北(1996)。
109.周信佑,「以超臨界二氧化碳流體萃取含有機磷農藥廢水及土壤之研究」,碩士論文,逢甲大學土木及水利工程研究所,台中(1999)。
110.林文發,「超臨界流體在高分子的應用」,化工,第41卷,第4期,第48-56頁(1994)。
111.林河木,「超臨界流體在食品工業的應用」,化工,第41卷,第4期,第42-47頁(1994)。
112.桂椿雄,「超臨界流體萃取法之簡介」,化學,第56卷,第4期,第303-309頁(1998)。
113.張木彬、張簡國平、林傑,「都市垃圾焚化廠及電弧爐煉鋼廠煙道排氣及灰份中戴奧辛濃度及物種分布研究」,都會合作空污計畫,NSC-91-EPA-Z-008-001(2002)。
114.曹磊、Muhlberger, F., Adam, T., Streibel, T., Zimmermann, R., Kettrup A.,王海舟,「汽車鋼板回收冶煉過程中塗覆油漆的裂變行為」,鋼鐵研究學報,第18卷,第1期,第54-58頁(2006)。
115.郭峻銘,「超臨界流體萃取法於下水污泥中直鏈烷基苯磺酸分析之研究」,碩士論文,國立交通大學環境工程研究所,新竹(2003)。
116.黃小林,「應用界面活性劑在氣相多環芳香烴化合物控制方法之研究」,博士論文,國立台灣大學環境工程學研究所,台北(2001)。
117.楊千紋,「利用煉鋼電弧爐熔融處理垃圾焚化飛灰之效益評估」,碩士論文,國立中山大學環境工程研究所,高雄(2005)。
118.經濟部工業局,電弧爐煉鋼業污染防治技術,台北(1994)。
119.經濟部工業局,鋼鐵業職業安全衛生管理系統建制指引,台北(2001)。
120.廖永生「人類肺癌組織及細胞株中多環芳香烴類受器Aryl Hydrocarbon Receptor, Ah-Receptor Nuclear Translocator和Cytochrome P4501A1之表現情形」,碩士論文,中山醫學大學毒理學研究所,台中(2000)。
121.廖明隆,界面化學與界面活性劑,文源書局,臺北(1994)。
122.趙承琛,界面基礎科學,復文書局,台南(2000)。
123.劉瓊芳,回收電爐集塵灰有價物質之技術介紹,環安簡訊電子報,第57期(2005)。
124.劉瓊芳,電爐集塵灰物化特性簡介,環安簡訓電子報,第57期(2005)。
125.蔡敏行,煉鋼煙塵之現況與資源化技術,環保月刊,第一卷,第四期,第98-113頁(2001)。
126.談駿嵩,「超臨界流體中之吸附與脫附」,化工,第41卷,第4期(1994)。
127.談駿嵩,「超臨界流體的運用」,科學發展,第359期,第12-17頁(2002)。
128.盧漢諭,「以超臨界二氧化碳流體萃取法移除土壤與廢水之毒性物質研究」,碩士論文,逢甲大學土木及水利工程研究所,台中(1999)。
129.賴順安,「鋼鐵業煙道排放多環芳香烴及金屬元素之特徵」,碩士論文,國立成功大學環境工程學系,台南(1999)。
130.戴昌毅、張傑明、許修禎,「超臨界流體與醇類溶劑汽液平衡之新量測技術」,化工,第43卷,第5期,第128-143頁(1996)。
131.顏美秀,「界面活性劑在土壤/地下水系統中微胞形成穩定性之探討」,碩士論文,國立屏東技術學院環境工程技術研究所,屏東(1996)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top