(3.238.96.184) 您好!臺灣時間:2021/05/12 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳宜蓁
研究生(外文):Yi-zhen Wu
論文名稱:印度芥菜吸收鎘與其根圈水溶性低分子量有機酸之相互關係
論文名稱(外文):Relationship between Cadmium Absorbed by Indian Mustard and Water Soluble Low Molecular Weight Organic Acids in Rhizosphere
指導教授:張簡水紋張簡水紋引用關係王敏昭王敏昭引用關係
指導教授(外文):Shui-Wen Chang chienMin-Chao Wang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:67
中文關鍵詞:總溶解Cd量Cd2+重金屬根圈石英砂水溶性低分子量有機酸印度芥菜
外文關鍵詞:Rhizosphere quartz sandHeavy metalsWater soluble LMWOAsIndian mustardTotal dissolved CdCd2+
相關次數:
  • 被引用被引用:1
  • 點閱點閱:269
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
鎘(Cd)為天然存在於土壤之重金屬之一;其為植物生長及動物之非基本要素,並且對大多數生物具高度毒性;再者,其毒性較其他多種重金屬元素之毒性高出2 至20 倍。Cd 對維管束植物為最具毒性金屬之第四位者。在美國毒性物質及疾病登錄名單中,Cd 是前十位最具危害毒性物質之第七位。因此,Cd 被認為是非常嚴重之污染質。再者總Cd 濃度超過8 mg kg-1,或可溶性 (生物有效性) 濃度超過0.001 mg kg-1 即會對植 (作) 物產生毒害作用。
植物根系能合成、累積和分泌許多化合物,如有機酸,可改變土壤和金屬物理和化學特性,參與養分吸收和重金屬解毒。根分泌有機酸能溶解許多金屬形成複合物,且可以改變土壤中重金屬的固定和移動性。然而污染土壤之植生復育,很少探討根圈土壤水萃取液Cd2+及Cd,水溶性有機酸,與植(作)物吸收Cd量之相關關係。十字花科植物在近年來也陸續被研究證實具有吸收重金屬的能力,因此,本研究以盆栽試驗,以生物復育用之指標植物,印度芥菜(Indian mustard; Brassica juncea)為供試植(作)物;石英砂為植(作)物生長介質,循序探討印度芥菜根分泌之有機酸以及其分泌之有機酸與添加Cd量之相關關係。印度芥菜在經播種育苗兩星期再生長培育八星期後,添加不同濃度之Cd溶液(0、100、200、300、400 mg L-1)。於添加後第0、3、10天後,依文獻建議之方法萃取及測定根圈石英砂溶液之低分子量有機酸(Low molecular weight organic acids: LMWOAs)、全Cd及Cd2+量,以及測定印度芥菜地上部於第0、3、10天吸收之鎘量。研究結果顯示印度芥菜根分泌之醋酸、丁酸、琥珀酸、乙醛酸、右旋酒石酸之量隨生長天數之增加而增加,在添加Cd第10天後添加濃度為100 mg L-1時,印度芥菜根分泌乙醛酸量為最高,其次為草酸>左旋乳酸>右旋酒石酸>醋酸>丁酸,且與添加其它Cd濃度者差異顯著。在不同濃度Cd處理下,印度芥菜地上部吸收之Cd量隨種植天數增加而增加,並隨添加Cd濃度之增加而增加;地下部吸收之Cd量隨種植天數增加而增加,又以添加濃度200 mg L-1Cd在第10天之吸收Cd量高於其他三種處理,且差異顯著。印度芥菜地下部吸收Cd量高於地上部。根圈土壤溶液低分子量有機酸量與全Cd及Cd2+成負相關係,顯示LMWOAs的分泌量會影響土壤溶液中鎘的移動性,間接影響植物根吸收Cd量。
Cadmium (Cd) is one of the heavy metals naturally present in soil environment.It is not the essential element for plant and animal growth. Moreover, it is highly toxic to most bio-organism.Further, it toxicity is 2 to 20 times higher than those of other heavy metals.Cd is the 4th of the most toxic metals to vascular plant. In the registered list of toxic substances and diseases in the United States of America, Cd is the 7th of the top ten of most hazardous toxic substances.Cd is thus regarded as a very severely pollutant.I will be toxic to plants or crops when total Cd concentration exceeds 8 mg kg–1 or soluble (bio-available) concentration exceeds 0.001 mg kg–1.
Plant root system can assimilate, accumulate, and excrete many kinds of compounds. For examples, organic acids can alter soil physical and chemical properties and involve nutrient absorption and detoxification of heavy metals. The excreted organic acids can dissolve various metals and form complexes, leading to the alteration of mobility of heavy metals in soil environment. However, the study of plant remediation of polluted soil rarely investigates the relationship among Cd2+ and Cd in water extract of rhizosphere soil, water soluble organic acids, and Cd uptake by plant or crop roots.Crucifers have recently been verified to have the capability to absorb heavy metals.This study was thus to investigate the relationship between organic acids excreted from the roots of Indian mustard (Brassica juncea) and the amount of spiked Cd in sand culture of pot experiment.The Indian mustard was seeded and the seedlings were cultured for two weeks.At the end of the growth of Indian mustard for additional eight weeks, various concentrations of Cd (0, 100, 200, 300, and 400 mg L–1) were amended to the sand culture of the pots.At the end of 0, 3rd, and 10th days of Cd amendment, the water soluble low molecular weight organic acids (LMWOAs) were extracted from rhizosphere quartz sand and determined according to the recommended method.Correspondingly, total dissolved Cd and Cd2+ in the water extract of rhizosphere quartz sand and absorbed Cd in the aboveground part of Indian mustard at the end of 0, 3rd, and 10th days of Cd amendment were also determined.The results showed that the amounts of acetic, butyric, succinic, glyoxylic, and D-tartaric acids excreted from the roots of Indian mustard increased with increasing growth period.The Cd amendment concentration of 100 mg L–1 at the end of the 10th day, the amount of glyoxylic acid excreted from the roots of Indian mustard was the largest.Then the order of other acids was oxalic > L-(+) lactic > D-tartaric > acetic > butyric acid.The Cd amendment concentration of 100 mg L–1 at the end of the 10th day, the amounts of these acids excreted from the roots of Indian mustard were significantly larger than the amounts of corresponding acids for the other Cd amendment concentrations.Under various Cd amendment concentrations, the amount of Cd absorbed in the aboveground part of Indian mustard increased with its growth period and also with the Cd amendment concentration.Correspondingly, the amount of Cd absorbed by the roots of Indian mustard increased with increasing its growth period.Moreover, the Cd amendment concentration of 200 mg L–1 at the end of the 10th day, the amount of absorbed Cd by the roots of Indian mustard was significantly larger than those for the other three Cd amendment concentrations.It showed that the amount of Cd absorbed by the roots of Indian mustard significantly larger than that in the aboveground part.Further, the amount of water soluble LMWOAs was negatively correlated with the amounts of total dissolved Cd and Cd2+ in rhizosphere quartz sand, showing the effect of the excretion of water soluble LMWOAs from roots on the mobility of Cd and its subsequent absorption by plant roots.
摘 要 I
Abstract III
致 謝 V
目 錄 VI
表目錄 VIII
圖目錄 IX
第一章 前 言 1
一、研究源起 1
第二章 前人研究 3
第一節、土壤中重金屬主要來源及整治方法 3
一、土壤中的重金屬來源 3
二、土壤整治技術 3
第二節、植生復育技術 4
一、植物修復整治之原理 4
二、萃取植物之特性 6
三、常見植物復育種類及相關機制 7
四、根圈土壤(rhizosphere soils)的定義與特性 9
第三節、根分泌之低分子量有機酸的特性與定量 10
一、有機酸的特性 10
二、有機酸的分析 10
三、低分子量有機酸含量測定 11
四、重金屬對根圈土壤低分子量有機酸種類與含量之影響 12
第四節、土壤中鎘重金屬污染之型態 14
一、土壤中鎘型態 14
二、土壤鎘污染特徵 15
三、植物吸收鎘 15
第三章 材料與方法 18
3.1供試作物 18
3.2盆栽設計 18
3.3植物育種及培育生長 18
3.4植株生育調查與植體分析 19
3.4.1生育調查 19
3.4.2生質產量 19
3.4.3植體鎘含量 19
3.5根圈石英砂中LMWOAs萃取、濃縮與淨化 19
3.6 LMWOAs 標準品 20
3.7氣相層析儀之規格與設定 20
3.7.1揮發性LMWOAs之分析 20
3.7.2非揮發性LMWOAs之衍生化 20
3.7.3非揮發性LMWOAs之分析 21
3.7.4建立LMWOAs之檢量線 21
3.7.5 LMOWAs滯留時間(retention time)之確立 21
3.8根圈土壤溶液全Cd及Cd2+分析 21
第四章 結果與討論 25
4.1 揮發性與非揮發性低分子量有機酸之分析 25
4.2 鎘濃度對印度芥菜生長之影響 26
4.3 添加不同濃度鎘溶液下根圈石英砂中低分子量有機酸之變化 32
4.4 不同濃度鎘溶液對植物吸收鎘溶液之影響 41
4.5 pH值與植體吸收鎘之關係 44
4.6 有機酸與全Cd及Cd2+ 45
第五章 結論與建議 47
參考文獻 48
附 錄 59

表目錄
表 1 適用於受重金屬污染土壤之復育技術整理表 4
表 2 超累積重金屬植物物種與植物復育研究 8
表 3 測定之低分子量有機酸之揮發性質、種類、化學式及中文名 22
表 4 印度芥菜植體之葉長與葉寬以及地上部與地下部的乾重和鮮重 31
表 5 種植印度芥菜之盆栽盆總體石英砂之pH值a 44
圖目錄
圖 1 揮發性有機酸之氣相層析分析滯留時間 23
圖 2 非揮發性有機酸之氣相層析分析滯留時間 24
圖 3 根圈石英砂之揮發性有機酸 25
圖 4 根圈石英砂之非揮發性有機酸 26
圖 5 添加Cd濃度100 mg L-1之Cd(NO3)2溶液第0天(左)與第7天(右) 27
圖 6 添加Cd濃度200 mg L-1之Cd(NO3)2溶液第0天(左)與第7天(右) 27
圖 7 添加Cd濃度300 mg L-1之Cd(NO3)2溶液第0天(左)與第7天(右) 27
圖 8 添加Cd濃度400 mg L-1之Cd(NO3)2溶液第0天(左)與第7天(右) 28
圖 9 添加Cd濃度500 mg L-1之Cd(NO3)2溶液第0天(左)與第7天(右) 28
圖 10 添加Cd濃度600 mg L-1之Cd(NO3)2溶液第0天(左)與第7天(右) 28
圖 11 添加Cd濃度700 mg L-1之Cd(NO3)2溶液第0天(左)與第7天(右) 29
圖 12 添加Cd濃度800 mg L-1之Cd(NO3)2溶液第0天(左)與第7天(右) 29
圖 13 印度芥菜根圈 29
圖 14 印度芥菜種植於石英砂八週後之生長情形 30
圖 15 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂醋酸之濃度 33
圖 16 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂丙酸之濃度 34
圖 17 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂丁酸之濃度 34
圖 18 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂丙二酸之濃度 35
圖 19 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂右旋-酒石酸之濃度 35
圖 20 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂反丁烯二酸之濃度 36
圖 21 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂草酸之濃度 36
圖 22 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂乙醛酸之濃度 37
圖 23 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂順丁烯二酸之濃度 37
圖 24 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂琥珀酸之濃度 38
圖 25 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂草醋酸之濃度 38
圖 26 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂檸檬酸之濃度 39
圖 27 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂異丁酸之濃度 39
圖 28 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂左旋-乳酸酸之濃度 40
圖 29 添加不同Cd濃度在第0天、第3天與第10天時,印度芥菜根圈石英砂蘋果酸之濃度 40
圖 30 印度芥菜在種植第0、3、10天所分泌有機酸總量 41
圖 31 種植於石英砂於添加不同Cd濃度溶液之第0天、第3天與第10天時,植體之印度芥菜地上部吸收之鎘量 42
圖 32 種植於石英砂於添加不同Cd濃度溶液之第0天、第3天與第10天時,植體之印度芥菜地下部吸收之鎘量 43
圖 33 種植於石英砂於添加不同Cd濃度溶液之第0天、第3天與第10天時,植體之印度芥菜含鎘總量 43
圖 34 印度芥菜在不同鎘濃度石英砂中生長10天後,根分泌之總有機酸含量與土壤溶液中全Cd及Cd2+的含量之關係 46
李承玹,「重金屬污染土壤中十字花科作物根分泌之低分子量雙羧基有機酸及其影響」,碩士論文,國立台灣大學研究所,台北(2000)。
廖睿宏,「土壤溶液中Cl、SO42- 與黃酸根陰離子對Cd2+濃度之影響」,碩士論文,朝陽科技大學環境工程與管理系,台中(2005)。
廖永綜,「蒸散作用對萵苣吸收鉛及根圈水溶性低分子量有機酸之影響」,博士論文,國立中興大學土壤環境科學系,台中(2006)。
賴鴻裕,「EDTA對促進受重金屬鎘鋅及鉛污染土壤植生復育之研究」,博士論文,國立台灣大學農業化學研究所,台北(2004)。
高博緒,「三種土壤中低分子量有機酸-重金屬錯合物生物降解作用之探討」,博士論文,屏東科技大學環境工程與科學系所,屏東(2007)。
洪伯隆,「蒸散作用對作物吸收鉛以及根圈土壤中水溶性低分子量有機酸之影響」,博士論文,國立中興大學土壤環境科學系,台中,第127頁(2002)。
周加再、陳益榮、黃裕星、蘇明清(1989)第七章:農業。中華民國臺灣地區環境資訊,林石根編輯。行政院環境保護署發行,台北102-121 頁。
陳尊賢,「重金屬污染土壤之植生復育技術與案例分析」,第八屆土壤污染整治研討會論文集,台北市第167-201頁 (2003)。
蘇德純、茹淑華、王激清,土壤鎘污染特徵及污染土壤的植物修復技術機理,中國生態農業學報,Vol. 14, No.14 (2006)。
王敏昭,離子層析法,實用儀器分析,國立編譯館,合記圖書出版社,臺北,第315頁(2003)。
溫源淼,「以植物修復技術處理遭受重金屬鎘污染土壤之研究」,碩士論文,國立中山大學海洋環境及工程學系,(2006)。
Allen, H. E., Hall, R. H. and Brishbin, T. D., “Metal speciation effects on aquatic toxicity,” Environ. Sci. Technol., Vol. 14, pp. 441-443 (1980).
Alloway, B. J., Heavy Metal in Soils, second ed. Chapman and Hall, London. (1995).
Banuelos, G. S., and Ajwa, H. A., “Trace elements in soils and plants: an overview,” J. Environ. Sci. Health, Vol. 34, pp. 951-974 (1999).
Bradfield, E. G., “Calcium complexes in the xylem sap of apple shoots,” Plant Soil, Vol. 44, pp. 495-499 (1976).
Chaney, R. L., and Giordano, P. M., Microelements as related to plant deficiencies and toxicities, In L.F. Elliot and F.J. Stevenson (ed.) Soils for management of organic wastes and wastewaters. ASA, Madison, WI., pp. 234–279 (1997).
Cafer, T., Pepeb, M. K. and Teresa, J. C. “The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus,” Environ. Pollut., Vol. 131, pp. 147-154 (2004).
Cheng, S., “Heavy metal pollution in China: origin, pattern and control,” Environ. Sci. Pollut. Res., Vol. 10, pp. 192-198 (2003).
Cherian, S., and Margarida, M. O., “Transgenic Plants in Phytoremediation: Recent Advances and New Possibilities,” Environ. Sci. Technol., Vol. 39, pp. 9377 -9390 (2005).
Choi, Y. E., Harada, E., Wada, M., Tsuboi, H., Morita, Y., Kusano, T., and Sano, H., “Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes,” Planta, Vol. 213, pp. 45-50 (2001).
Cieslinski, G., Van Rees, K. C. J., Szmigielska, A. M., and Huang, P. M., “Low molecular weight organic acids released from root of drum wheat and flax into sterile nutrient solutions,” J. Plant Nutr., Vol. 20, pp. 753-764 (1997).
Cieslinski, G., Van Rees, K. C. J., Szmigielska, A. M., Krishnamurti, G. S. R., and Huang, P. M., “Low-molecular-weight organic acids in rhizosphere soils of drum wheat and their effect on cadmium bioaccumulation,” Plant Soil, Vol. 203, pp. 109-177 (1998).
Cobbett, C. S., “Phytochelatin biosynthesis and function in heavy-metal detoxification,” Curr. Opin. Plant Biol., Vol. 3, pp. 211-216 (2000).
Cui, Y. J., Zhu, Y. G., Zhai, R. H., Chen, D. Y., Huang, Y. Z., Qiu, Y., and Liang, J. Z,. “Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China,” Environ. Int., Vol. 30, pp. 785-791 (2004).
Cunnigham, S. D. and Berti, W. R., “Remediation of contaminated soils with green plants: an overview,” In. Vitor Cell. Dev. B., Vol. 29, pp. 207-212 (1993).
Curl, E. A. and Truelove, B., The Rhizosphere, New York:Springer-Verlag (1986).
Cushuman, J. H., “Nutrient transport inside and outside the rhizosphere: Theory,” Soil Sci. Soc. Am. J., Vol. 46, pp. 704-709 (1982).
Delhaize, E., Craig, S., Beaton, C. D., Bennet, R. J., Jagadish, V. C., and Randall, P. J., “Aluminum tolerance in wheat (Triticum aestivum L.).I. Uptake and distribution of aluminum in root apices,” Plant Physiol., Vol. l03, pp. 685-693 (1993).
Diels, L., Van Der Lelie, N. and Bastiaens, L., “New development in treatment of heavy metal contaminated soils,” Rev. Environ. Sci. Biotechnol., Vol. 1, pp. 75-82 (2002).
Ellis, D. R., Sors, T. G., Brunk, D. G., Albrecht, C., Orser, C., Lahner, B., Wood K. V., Harris, H. H., Pickering, I. J., and Salt, D. E., “Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase,” J. Exp. Bot., Vol. 50, pp. 1827-1835 (2004).
Fox, T. R. and Comerford, N. B., “Low molecular weight organic acids in selected forest soils of the southwestern USA,” Soil Sci. Soc. Am. J., Vol. 54, pp. 139-144 (1990).
Foy, C. D., Lee, E. H., Coradetti, C. C., and Taylor, G. J., Organic acids related to differential aluminium tolerance in wheat (Triticum aestivum) cultivars, In M.L. van Beusichem (ed.) Plant nutrition-physiology and applications, Kluwer Academic Publishers, Boston., pp. 381-389 (1990).
Gerritse, R. G., and Driel, W. V., “The relationship between adsorption of trace metals, organic matter, and pH in temperate soils,” J. Environ. Qual., Vol. 13, pp. 197-204 (1984).
Giancarlo, R., Landi, L. and Nannipieri, P., “Degradation of low molecular weight organic acids complexed with heavy metals in soil,”Geoderma, Vol. 122, pp. 311-315 (2004).
Greger, M., and Lindberg, S., “Effects of cadmium and EDTA on young suger beets(Beta vulgaris),” Physiol. Plant, Vol. 66, pp. 69-74 (1986).
Gutiérrez-Alcalá, G., Gotor, C., Meyer, A. J., Fricker, M., Vega, J. M., and Romero, L. C., “Glutathione biosynthesis in Arabidopsis trichome cells,” Proc. Natl. Acad. Sci. USA, Vol. 97, pp. 11108-11113 (2000).
Gray, C. W., McLaren, R. G., Roberts, A. H. C., and Condron, L. M., “Cadmium phytoavailability in some New Zealand soils,” Aust. J. Soil Res., Vol. 37, pp. 461-77 (1999a).
Gray, C. W., McLaren, R. G., Roberts, A. H. C., and Condron, L. M., “Effect of soil pH on cadmium phytoavailability in some New Zealand soils,” NEW Zeal. J. Crop Hort., Vol. 27, pp. 169-79 (1999b).
Grifferty, A., and Barrington, S., “Zinc uptake by young wheat plants under two transpiration regimes,” J. Environ. Qual., Vol. 29, pp. 443-446 (2000).
Haag-Kerwer, A., Schafer, H., Heiss, S., Walter, C., and Rausch, T., “Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis,” J. EXP. BOT., Vol. 50, No. 341, pp. 1827-1835 (1999).
Hammer, D., and Keller, C., “Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants,” J. Environ. Qual., Vol. 31, pp. 1561-1569 (2002).
Hantke, K., “Bacterial zinc transporters and regulators,” BioMetals, Vol. 14, pp. 239-249 (2000).
Jones, J. B., and Case, V. W., Sampling, handling, and analyzing plant tissue samples, In: R.L. Westerman, Editor, Soil Testing and Plant Analysis (third ed.), SSSA. Madison. WI. pp. 389-427 (1990).
Kabata-Pendias, and Pendia, H., Trace elements in plants, In: A. Kabata-Pendias and H. Pendia, Editors, Trace Element in Soils and Plants (third ed.), CRC Press, Boca Raton, FL., pp. 73-98 (2001).
Kelly, J. J., and Tate, R. L., “Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter,” J. Environ. Qual., Vol. 27. pp. 609-617 (1998).
Klassen, S. P., J. E. McLean, P. R. Grossl, and Sims, R. C., “Fate and behavior of lead in soils planted with metal-resistant species (river birch and smallwing sedge),” J. Environ. Qual., Vol. 29, pp. 1826-1834 (2000).
Krishnamurti, G. S. R., Cieoeliñski, G., Huang, P. M., and Van Rees, K. C. J., “Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability,” J. Environ. Qual., Vol. 26, pp. 271-277 (1997).
Lasat, M. M., “Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues,” J. Hazard. Subst. Res., Vol. 2, pp. 1-25 (2000).
Lee, K. C., Cunningham, B. A., Paulsen, G. M., Liang, G. H., and Moore, R. B., “Effect of Cd on respiration rate and activity of several enzymes in soybean seedlings,” Physiol. Plant, Vol. 36, pp. 4-6 (1976).
Lilienholm, B. C., Dudley, L. M., and Juriniak, J. J., “Oxalate determination in soils using ion chromatography,” Soil Sci. Soc. Am. J., Vol. 56, pp. 324-326 (1992).
Quartacci, M. F., Argilla, A., Baker, A. J. M., and Navari-Izzo, F., “Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere, Vol. 63, pp. 918-925 (2006).
Marschner, H., Mineral nutrition of higher plants. Academic Press, London, UK (1995).
Marschner, H., Mineral Nutrition of Higher Plants (2ed.), San Diego. CA. USA: Academic Press (1995).
Marschner, H., Treeby, M., and Romheld, V., “Role of root-induced changes in the rhizosphere for iron acquisition in higher plants,” Z. Pflanz. Bodenkunde, Vol. 152, pp. 197-204 (1989).
McGrath, S. P., and Zhao, F.-J., “Phytoextraction of metals and metalloids from contaminated soils,” Curr. Opin. Biotech., Vol. 14, pp. 277-282 (2003).
Mench, M., and Martin, E., “Mobilization of cadmium and other metals from two soils by root exudates of Zea may L., Nicotiana tabacum L. and Nicotiana rustica L,”Plant Soil., Vol. 132, pp. 187-196 (1991).
Mench, M., Morel, J. L., Guckert, A., and Guillet, B., “Metal binding with root exudates of low molecular weight,” J. Soil Sci., Vol. 39, pp. 521-527 (1988).
Mench, M., and Martin, E., “Mobilization of cadmium and other metals from two soils by root tabacum L. and Nicotiana rustica L,” Plant Soil., Vol. 132, pp. 187-196 (1991).
Moyukh, G. and Singh, S. P., “A comparative study of cadmium phytoextraction by accumulator and weed species,” Environ. Pollut., Vol. 133, pp. 365-371 (2005).
Naidu, R., and Harter, R. D., “Effect of different organic ligands on cadmium sorption by and extractability from soils,” Soil Sci. Soc. Am. J., Vol. 62, pp. 644- 650 (1998).
Nigam, R., Srivastava, S., Prakash, S., and Srivastava, M. M., “Cadmium mobilisation and plant availability – the impact of organic acids commonly exuded from roots,” Plant Soil., Vol. 230, pp. 107-113 (2001).
Nye, P. H., and Tinker, P. B., “Solute movement in soil-root system,” Blackwell Scientific Publ. Oxford., Vol. 4. (1977).
Onyatta, J. O., and Huang, P. M., “Kinetic of cadmium release from selected tropical soils from Kenya by low-molecular-weight organic acids,” Soil Sci., Vol. 168, pp. 234-252 (2003).
Padmaja, K., Prasad, D. D., and Prasad, A. R. K., “Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate,” Photosynthetica, Vol. 24, pp. 399-405 (1990).
Page, A. L., Bingham, F. T., and Chang, A. C., “Cadmium In Effects of Heavy Metal Pollution on Plants,” Effects of Trace Metals on Plant Function, Vol. 1, N. W. Lepp (ed.), Applied Science Publishers, London, pp. 77-109 (1981).
Parker, D. R., and Pedler, J. F. “Reevaluating the free-ion activity model of trace metal availability to higher plants,” Plant Soil, Vol. 196, pp. 223-228 (1997).
Peijnenburg, W., Baerselman, R., de Groot, A., Jager, T., Leenders, D., and Posthuma, L., “Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils,” Arch. Environ. Contam. Toxicol., Vol. 39, pp. 420-30 (2000).
Peters, R.W., “Chelant extraction of heavy metals from contaminated soils,” J. Hazard. Mater., Vol. 66, pp. 151-210 (1999).
Petersen, W., and Bottger, M., “Contribution of organic acids to the acidification of the rhizosphere of maize seedlings,” Plant Soil, Vol. 132, pp. 159-163 (1991).
Pickering, W., Ecological cycling. In J. O. Nriagu (ed.)Cadmium in environment. John Wiley and Sons, New York. pp. 365-397(1980).
Pohlman, A. A., and McColl, J. G., “Soluble organics from forest litter and their role in metal dissolution,” Soil Sci. Soc. Am. J., Vol. 52, pp. 265-271 (1988).
Poulsen, I. F., and Hansen, H. C. B., “Soil sorption of nickel in presence of citrate or arginine,” Water air soil pollut., Vol. 120, pp. 249-259 (2000).
Prasad, M. N. V.,“Cadmium toxicity and tolerance in vascular plants,” Environ. Exp. Bot., Vol. 35, pp. 525-545 (1995).
Pulford, I. D., and Watson, C., “Phytoremediation of heavy metal-contaminated land by treesd-a review,” Environ. Int., 29, 529-540 (2003).
Quartacci, M. F., Argilla, A., Baker, A. J. M., Navari-Izzo, F., “Phytoextraction of metals from a multiply contaminated soil by Indian mustard,” Chemosphere, Vol. 63, pp. 918-925 (2006).
Raskin, I., Kumar, P. B. A. N., Dushenkoy, S., and Salt, D. E., “Bioconcentration of heavy metals by plants,” Curr. Opin. Biotech., Vol. 5, pp. 285-290 (1994).
Rauser, W. E., “Structure and function of metal chelators produced by plants,” Cell. Biochem. Biophys., Vol. 31, pp. 19-48 (1999).
Robert, M., and Berthelin, J., “Role of biological and biochemical factors in soil mineral weathering,” In P.M. Huang and M. Schnitzer (eds.) Interaction of soil minerals with natural organics and microbes. SSSA Special. Publ. 17. SSSA, Madison, WI. pp. 453-495 (1994).
Rogers, E. E., Eide, D. J., Guerinot, M. L., “Altered selectivity in an Arabidopsis metal transporter,” Proc. Natl. Acad. Sci. USA., Vol. 97, pp. 12356-12360 (2000).
Rovira, A .D., “Plant root exudates,” Bot. Rev., Vol. 35, pp. 35-57 (1969).
Rovira, A. D., and McDougall, B. M., “Microbiological and biochemical aspects of the rhizosphere,”. In A. D. McLaren and G. H. Peterson (eds.) Soil Biochemical., Vol. 1, pp. 417-463 (1967).
Ryan, P. R. and Delhaize, E., “Function and mechanism of organic anion exudation from plant roots,” Annu. Rev. Plant Physiol. Plant Mo. Biol., Vol. 52, pp. 527-560 (2001)
Sakar, A. N., Jenkins, D. A., and Jones, R. G. W., “Modifications to mechanical and mechanical composition of soil within the rhizosphere” The Soil-Rooot Interfact., Vol. 2, pp. 125-136 (1979).
Salt, D. E., Prince, R. C., Pickering, I. J., and Raskin, I., “Mechanisms of cadmium mobility and accumulation in indian mustard,” Plant Physiol., Vol. 109, pp. 1427-1433 (1995).
Salt, D. E., Blaylock, M., Kumer, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., and Raskin, I., “Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plant,” Biotechnology, Vol. 13 , pp 468-474 (1995).
Sauve, S., Norvell, W. A., Bride, M. M., and Hendershot, W., “Speciation and complexation of cadmium in extracted soil solution,” Environ. Sci. Technol., Vol. 34, pp. 291-296 (2000).
Senden, M. H. M. N., Van Paassen, F. J. M., Van Der Meer, A. J. G. M., and Wolterbeek, H. Th., “Cadmium-citric acid-xylem cell wall interactions in tomato plants,” Plant Cell. Environ., Vol. 15, pp. 71-79 (1992b).
Somashekaraiah, B. V., Padmaja, K., and Prasad, A. R. K., “Phytoxicity of cadmium ions germinating seedlings of mung bean(Phaseolus vulgaris):Involvement of lipid peroxides in chlorophyll degradation,” Physiol. Plant, Vol. 85, pp. 85-89 (1992).
Sposito, G., Bingham, F. T., Yadav, S. S., and Inouye, C. A., “Trace metal complexation by fulvic acid extraction form sewage sludge :II. Development of chemical models,”Soil Sci. Soc. Am. J., Vol. 46, pp. 51-56 (1982).
Stevenson, F. J., and Fitch, A., “Chemistry of complexation of metal ion with soil solution organics,” pp. 29-58 (1994).
Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I., and Sherwood, R. P., “The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley,” Physiol. Plant, Vol. 63, pp. 293-298 (1985).
Street, J. J., Lindsay, W. L., and Sabey, B. R., “The solubility and plant uptake of cadmium in soils amended with cadmium and sewage sludge,” J. Environ. Qual., Vol. 6, pp. 72-77 (1977).
Szmigielska, A. M., Van Rees, K. C. J., Cieslinski, G., and Huang, P. M., “Determination of low molecular weight dicarboxylic acid in root exudates by gas chromatogphy,” J. Agric. Food Chem., Vol. 43, pp. 956-959 (1995).
Szmigielska, A. M., Van Rees, K. C. J., Cieslinski, G., and Huang, P. M., “Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat,” J. Agric. Food Chem., Vol. 44, pp. 1036-1040 (1996).
Szmigielska, A. M., Van Rees, K. C. J., Cieslinski, G., and Huang, P. M., “Comparison of liquid and gas chromatography for analysis of low molecular weight organic acids in rhizosphere soil,” Commun. Soil Sci. Plant Anal., Vol. 28, pp. 99-111 (1997).
Taniguchi, S., Yamagata, N., and Sakurai, K., “Cadmium adsorption on hydroxyaluminosilicate –montmorillonite complex as influenced by oxalate and citrate,” Soil Sci. Plant Nutr., Vol. 46, pp. 315-324 (2000).
Thomine, S., Wang, R. Ward, J. M., Crawford, N. M., and Schroeder, J. I., “Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes,” P. Natl. Acad. Sci. USA., Vol. 97, pp. 4991-4996 (2000).
Thuvander, A., and Oskarsson, A., Adverse health effects due to soil and water, acidification. Stockholm: Swedish Environmental Protection Agency. Report 4881, (1998).
Uren, N. C. and Reisenauer, H. M., “The role of root exudates in nutrient acquisition,” Adv. Plant Nutr., Vol. 3, pp. 79-114 (1988).
Vangronsveld, J., and Cunningham, S. D., “Metal-Contaminated Soils: In Situ Inactivation and Phytorestoration,” Springer-Verlag, NY, USA (1999).
Wagner, G. J., “Accumulation of cadmium in crop plants and its consequences to human health,” Adv. Agron., Vol. 51, pp. 173-207 (1994).
White, M. C., Decker, A. M., and Chaney, R. L., “Metal complexation in xylem fluid: I. Chemical composition of tomato and soybean stem exudates,” Plant Physiol, Vol. 67, pp. 292-300 (1981).
Woolhouse, H. W., “Toxicity and tolerance in the responses of plants to metals,” In PS Lange, CB Nobel, OL Osmond, H Ziegler, eds, Physiological plant ecology III: responses to the chemical and biological environment, Springer-Verlag, Berlin, Heidelberg, pp. 246-300 (1983).
Wu, L. H., Luo, Y. M., Christie, P., and Wong, M. H., “Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil,” Chemosphere, Vol. 50, pp. 819-822 (2003).
Wu b, Z. H., Gu, Z. M., Wang, X. R., Evans, L., Guo, H. Y., “Effect of organic acids on adsorption of lead onto montmorillonite, goethite and humic acid,” Environ. Pollut. Vol. 121, pp. 469-475 (2003).
Zhao, F. J., Lombi, E., Breedon, T., and McGrath, S. P., “Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri,” Plant Cell Environ., Vol. 23, pp. 507-514 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔