(3.236.231.61) 您好!臺灣時間:2021/05/11 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳國漢
研究生(外文):Kuo-Han Chen
論文名稱:探討氧化鋅與二氧化鈦對含芘污染土壤的降解效果
論文名稱(外文):Study on Remediation of Pyrene Contaminated Soils by ZnO and TiO2 Nano-Catalysts
指導教授:王敏昭王敏昭引用關係張簡水紋張簡水紋引用關係
指導教授(外文):Min-Chao WangShui-Wen Chang chien
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:96
中文關鍵詞:光催化多環芳香族碳氫化合物光觸媒電子電洞對
外文關鍵詞:electron-hole pairsPAHsPhotocatalystpyrenePhotocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
近年來環境荷爾蒙( environmental hormone )已成重要環境議題,依據美國環境保護署( USEPA )列出主要有毒有機化合物中,芳香族化合物佔有相當比例,其中多環芳香族碳氫化合物( Polycyclic Aromatic Hydrocarbons, PAHs ) 是近年來廣受重視之環境污染物之ㄧ,而PAHs之來源主要為含碳化合物不完全燃燒或石化燃料之使用過程,PAHs進入大氣中後藉由乾、濕沉降進入地表並與土壤進行反應形成沉澱物或被植物吸收,進而影響人體。
光觸媒已廣泛應用於許多有機污染物上之處理且具成效,當光觸媒接受足夠光源作為電子躍升之能量時,將產生所謂之電子電洞對,其電子電洞對與氧氣、水接觸後將形成具強氧化能力之•OH將可有效破壞有機污染物。
本研究以溶膠-凝膠法及沉澱法製備奈米TiO2與ZnO,使用FE-SEM確認觸媒粒徑,並選定美國環保署公告16種PAHs中之芘( Pyrene )作為污染物,以人工配製之方式,配製Pyrene污染土壤濃度為100 mg kg-1,以太陽光作為激發觸媒之能量,使用奈米TiO2與ZnO照光與未照光處理沖積土、紅壤中Pyrene污染物,並以石英砂作為對照組,當處理完畢後以批次萃取法確認Pyrene殘留濃度,得知光催化Pyrene之效果,其結果顯示以紅壤優於沖積土,又以對照組石英砂降解效果最佳,亦顯示出照光處理與未照光處理差異顯著,以照光處理為佳,另外以觸媒劑量及土壤pH值作為控制因子,觸媒添加量與土壤之比例控制為0.5、1、3、5% ( w/w ),結果顯示添加觸媒劑量與Pyrene降解率呈正相關,但添加3%與5%之光觸媒劑量其降解率差異不顯著。再以H3PO4與KOH調整土壤pH值為pH 4、pH 8,進行光催化處理,結果顯示土壤pH 4之光催化Pyrene降解率較佳。
Abstract
In recent years the environment hormone has become the important environment subject, lists in the main virulent organic compound based on US Environmental Protection Department. The aromatic compound holds the perspective, the multi-link aromatic hydrocarbon (Polycyclic Aromatic Hydrocarbons, PAHs) was recent years Guang Shou takes the environment pollutant. But origin of the PAHs mainly to contain the hydrocarbon compounds incomplete combustion or use of process the petrochemical fuel. After PAHs enters in the atmosphere, because of does, the wet subsidence to enter the surface and to carry on the response sludging or by the plant absorption with the soil, then affects the human body.
The light catalyst has widely applied on many organic pollutant processing, and result. When the light catalyst accepts the foot photo source takes energy of the electronic jump, will produce the so-called electronic electricity right. Its electronic electricity hole to after oxygen, water contact will form has the strong oxidizing ability • OH to be possible to destroy the organic pollutant effectively. After processing finished, by a raid of extraction method confirms the Pyrene residual density, effect of the knowing photochemical catalysis Pyrene.
This research by sol - gelatin law and precipitation method preparation nanometer TiO2 and ZnO. Uses the FE-SEM confirmation catalyst particle size, and designated that in American environmental protection bureau announcement 16 kind of PAHs Pyrene takes the pollutant. Way of take the manual configuration, compounds the Pyrene contaminated soil density as 100 mg kg-1. . The ether sunlight takes energy of the stimulation catalyst, use nanometer TiO2and the ZnO irradiation has not processed in the capping mass, the laterite with the irradiation the Pyrene pollutant. And takes the control group by the quartz sand. Also shows that phototherapy not to deal with as light processing significantly, as better-handling, and a catalyst dose and soil pH value as a control factor, catalyst and quantity of soil and the proportion of control for 0.5,1,3,5% (w / w) The results showed that add a dose of catalyst and Pyrene degradation rate was positively correlated, but added 3 percent and 5 percent of its degradation Photocatalyst dose rate difference was not significant. KOH with H3PO4 and then adjust the soil pH value for the pH 4, pH 8, a photocatalytic treatment showed that the soil pH 4 of the photocatalytic Pyrene degradation rate better.

Key word:Photocatalysis, PAHs, Photocatalyst, Pyrene, Electron-hole pairs
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VI
圖目錄 VII
第一章 PAHs環境之宿命與光觸媒應用之探討 - 1 -
一、PAHs 基本特性與來源 - 1 -
二、PAHs環境中最終宿命與分佈 - 6 -
三、光觸媒之源起與特性 - 9 -
四、光催化反應 - 11 -
五、環境因子對光催化有機污染物之影響 - 14 -
六、參考文獻 - 16 -
第二章 觸媒催化含芘污染土壤之探討 - 23 -
一、前言 - 23 -
二、前人研究 - 24 -
三、材料與方法 - 27 -
四、結果與討論 - 39 -
(一) 供試土壤基本理化性質 - 39 -
(二) 光照時間與觸媒添加劑量對Pyrene降解之探討 - 39 -
第三章 改變土壤pH值對觸媒催化Pyrene之影響 - 52 -
一、前言 - 52 -
二、前人研究 - 53 -
三、材料與方法 - 56 -
四、結果與討論 - 60 -
(一)調整土壤pH值之照光與未照光處理 - 60 -
(二)同一種pH環境下三種土壤之比較 - 67 -
(三)同一種土壤下三種pH值之比較 - 69 -
(四)傅利葉轉換紅外線光譜分析 - 72 -
五、結論 - 79 -
第四章 結論與建議 - 84 -
附錄 - 85 -

表目錄
表 1-1 有機物揮發性分類表 - 2 -
表1-2 PAHs於25oC下蒸氣壓、水中溶解度與親電性反應 - 3 -
表1-3國際組織對PAHs致癌性之研究 - 5 -
表1-4 Pyrene物理化學性質 - 8 -
表2-1、試驗樣品與材料 - 28 -
表2-2、本試驗所使用實驗設備與儀器 - 29 -
表2-3、本試驗所使用實驗設備與儀器(續) - 30 -
表2-4、供試土壤理化性質 - 37 -
表 2-5供試土壤陰陽離子之含量 - 38 -
表3-1 土壤pH值 - 57 -
表3-2 土壤調整pH值後交換性陽離子之含量 - 59 -
附表一、TiO2照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 85 -
附表二、ZnO照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 86 -
附表三、土壤pH 4之TiO2照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 87 -
附表四、土壤pH 4之ZnO照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 88 -
附表五、土壤pH 8之TiO2照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 89 -
附表六、土壤pH 8之ZnO照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 90 -
附表七、TiO2未照光處理不同時間連續批次萃取土壤中Pyrene之降解率…. - 91 -
附表八、ZnO未照光處理不同時間連續批次萃取土壤中Pyrene之降解率…. - 92 -
附表九、土壤pH 4之TiO2未照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 93 -
附表十、土壤pH 4之ZnO未照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 94 -
附表十一、土壤pH 8之TiO2未照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 95 -
附表十二、土壤pH 8之ZnO未照光處理不同時間連續批次萃取土壤中Pyrene之降解率 - 96 -


圖目錄
圖1-1 美國環保署公告清單16種PAHs之結構與命名 - 4 -
圖1-2光電反應槽 - 10 -
圖1-3半導體受光激發後之電子-電洞生成及界面反應示意圖 - 11 -
圖2-1、Pyrene之滯留時間 - 30 -
圖2-2、Pyrene檢量線 - 30 -
圖2-3 TiO2於100 nm下之觀測影像 - 34 -
圖2-4 ZnO於100 nm下之觀測影像 - 34 -
圖2-5 實驗流程圖 - 38 -
圖2-6 使用TiO2四種劑量照光與未照光處理石英砂中Pyrene之降解率 - 39 -
圖2-7 使用ZnO四種劑量照光與未照光處理石英砂中Pyrene之降解率 - 40 -
圖2-8 使用TiO2四種劑量照光與未照光處理沖積土中Pyrene之降解率 - 40 -
圖2-9 使用ZnO四種劑量照光與未照光處理沖積土中Pyrene之降解率 - 41 -
圖2-10 使用TiO2四種劑量照光與未照光處理紅壤中Pyrene之降解率 - 41 -
圖2-11 使用ZnO四種劑量照光與未照光處理紅壤中Pyrene之降解率 - 42 -
圖2-12 使用TiO2、ZnO添加5%劑量下照光與未照光處理Pyrene之降解率…………………………………………………………………………..…- 42 -
圖3-1 pH 4使用TiO2四種劑量照光與未照光處理石英砂中Pyrene之降解率 - 60 -
圖3-2 pH 4使用ZnO四種劑量照光與未照光處理石英砂中Pyrene之降解率 - 61 -
圖3-3 pH 4使用TiO2四種劑量照光與未照光處理沖積土中Pyrene之降解率 - 61 -
圖3-4 pH 4使用ZnO四種劑量照光與未照光處理沖積土中Pyrene之降解率 - 62 -
圖3-5 pH 4使用TiO2四種劑量照光與未照光處理沖積土中Pyrene之降解率 - 62 -
圖3-6 pH 4使用ZnO四種劑量照光與未照光處理紅壤中Pyrene之降解率 …- 63 -
圖3-7 pH 8使用TiO2四種劑量照光與未照光處理石英砂中Pyrene之降解率 - 63 -
圖3-8 pH 8使用ZnO四種劑量照光與未照光處理石英砂中Pyrene之降解率 - 64 -
圖3-9 pH 8使用TiO2四種劑量照光與未照光處理沖積土中Pyrene之降解率 - 64 -
圖3-10 pH 8使用ZnO四種劑量照光與未照光處理沖積土中Pyrene之降解率 - 65 -
圖3-11 pH 8使用TiO2四種劑量照光與未照光處理紅壤中Pyrene之降解率.. - 65 -
圖 3-12 pH 8使用ZnO四種劑量照光與未照光處理紅壤中Pyrene之降解率. - 66 -
圖3-13 pH 4使用TiO2、ZnO 5%照光與未照光處理土壤中Pyrene之降解率. - 67 -
圖3-14 pH 8使用TiO2、ZnO5%照光與未照光處理土壤中Pyrene之降解率.. - 68 -
圖3-15 三種pH下照光與未照光處理石英砂中Pyrene之降解率 - 69 -
圖3-16三種pH下照光與未照光處理沖積土中Pyrene之降解率 - 70 -
圖3-17 三種pH下照光與未照光處理紅壤中Pyrene之降解率 - 70 -
圖3-18 ZnO與TiO2催化降解Pyrene污染沖積土之傅利葉轉換紅外線光譜 …- 72 -
圖3-19 ZnO與TiO2催化降解Pyrene污染沖積土之傅利葉轉換紅外線分析光譜之差分圖譜 - 73 -
圖3-20 ZnO與TiO2催化降解Pyrene污染紅壤之傅利葉轉換紅外線光譜 ……- 74 -
圖3-21 ZnO與TiO2催化降解Pyrene污染紅壤之傅利葉轉換紅外線分析光譜之差分圖譜 - 75 -
圖3-22 ZnO與TiO2催化降解Pyrene污染石英砂之傅利葉轉換紅外線光譜 …- 76 -
圖3-23 ZnO與TiO2催化降解Pyrene污染石英砂之傅利葉轉換紅外線分析光譜之差分圖譜 - 77 -
呂局校,「高雄市大氣中多環芳香烴化合物濃度特徵之調查分析」,碩士論文,國立中山大學環境工程研究所,高雄 (2006)。

林淵淙,「餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵」,碩士論文,國立成功大學環境工程學系,台南 (2000)。

徐慧宜,「混合型光觸媒降解水中4-硝基酚之研究」,碩士論文,國立雲林科技大學環境與安全衛生工程系碩士班,雲林 (2005)。

張世宗,「農業廢棄物焚化溫度對PAHs廢棄產生之影響」,博士論文,台灣大學生物產業機電工程研究所,台北 (2005)

盧伯麟,「二氧化鈦光觸媒薄膜備製及改質與環境污染物去除之研究」,碩士論文,逢甲大學環境工程與科學學系,台中 (2005)。

Abelmann K., Kleineidam S., Knicker S., and Grathwohl P., “Sorption of HOC in soils with carbonaceous contamination: Influence of organic-matter composition,”J. Plant Nutr. Soil Sc., Vol. 168, pp.293-306 (2005).

Alaton, I. A., Balcioglu I. A., and Bahnemann D. W.,” Advanced oxidation of a reactive dyebath effuent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes,” Water Res., pp. 1143-1154 (2002).

Baumard P., Budzinski H., Garrigues P., Dizer H., and Hansen P.D.” Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations,” Mar. Environ. Res., Vol.47, pp. 17-47 (1999).

Balmer, M. E., Goss, K. U., and Schwanenbach, R. P., “Photolytic transformation of Organic pollutants on soil surfaces-an experimental approach,” Environ. Sci. Technol., Vol. 34, pp.1240-1246 (2000).

Carp, O. and Huisman, C. L. A., “Reller, Photoinduced reactivity of titanium dioxide,” Prog. Solid State Ch., Vol. 32, pp.33–177 (2004).

Carter, C. W., and Suffet, I. H.”Binding of DDT to Dissolved Humic Materials,” Environ. Sci. Technol., Vol. 16, pp.735-740 (1982).

Chefetz, B., Deshmukh, A.P., Hatcher, P.G. and Guthrie, E.A., “Pyrene sorption by natural organic matter,” Environ. Sci. Technol., Vol. 34, pp.2925-2930 (2000).

Chen, S. J., Liao, S. H., Jian, W. J. and Lin, C. C., “Partical Size Distribution of Aerosol Carbons in Ambient Air,” Environ. Int., Vol. 23, No.4, pp. 475-488 (1997).

Chiou, C. T., and Schmedding, D. W., “Partitioning of organic compounds in octanol-water systems,” Environ. Sci. Technol., Vol.16, pp.4-10 (1982).


Chiou, C.T., McGroddy, S.E., and Kile, D.E., “Partition characteristics
of polycyclic aromatic hydrocarbons on soils and sediment,”
Environ. Sci. Technol., Vol. 32,pp.264–269 (1998).

Chu, W., Choy W.K., and So T.Y., “The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline,”J. Hazard. Maters.,Vol.141, pp.86-91 (2007).

Daisey, J. M., Hodgson, A. T., Fisk, W. J., and Brinke, J. T., “Volatile Organic Compounds in Twelve California Office Building; Classes, Concert Rations and Sources,” JAPCA J. Air Waste MA., Vol.50 (1994).

Davis, A. P., and Huang, C. P., “Adsorption of Some Substituted Phonels onto Hydrous CdS(s),” Langmuir , Vol. 6, pp. 857-862 (1990).

Ding, G.W., Novak, J.M., Herbert, S.and Xing, B.S.” Long-termTillage Effects on Soil Metolachlor Sorption and Desorption Behavior,” Chemosphere, Vol. 48, pp.897–904 (2002).

Fujishima, A., Tata, N. R. and Donald, A. T.,”Titanium dioxide photocatalysis” J. Photoch. Photobio. A., pp.1-21 (2000).

Galindo, G., Jacques P., and Kalt, A., “Photooxidation of the phenylazonaphthol on TiO2: kinetic and mechanistic investigations ,”Chemosphere, Vol. 45, pp.997-1005 (2001).

Guinan, J., Charlesworth, M., Service, M., and Oliver, T.,“Sources and Geochemical Constraints of Polycyclic Aromatic Hydrocarbons(PAHs) in Sediments and Mussels of two Northern Irish Sea-loughs,” Mar. Pollut. Bull., Vol. 42, No.11, pp. 1073-1081 (2001).

Gunasekara, A.S., and Xing, B.S.,”Sorption and Desorption of naphthalene by Soil Organic Matter: Importance of Aromatic and Aliphatic Components,” J. Environ., Vol. 32, pp.240–246 (2003).

Hwang, S., and Cutright T.J.,” The impact of contact time on pyrene sorptive behavior by a sandy-loam soil,” Environ. Pollut.,Vol. 117, pp.371-378 (2002).

Kaupp, H., and McLachlan, S., “Gas/Particle of PCDD/Fs, PCBs, PCNs, and PAHs,”Chemosphere, Vol. 38, No. 14, pp. 3411-3421 (1999).

Lee, L.S., Rao, P.S.C., and Okuda, I., “Equilibrium partitioning of
polycyclic aromatic hydrocarbons from coal tar in water.” Environ.
Sci. Technol., Vol. 26, NO. 11, pp.2110–2115 (1992).

Miller, G. C., Herbert, V. R., and Miile, M. J., “Photolysis of octachlorodibenzo-p-dioxin on soils: production of 2,3,7,8-TCDD,” Chemosphere,Vol.18, pp.1265-1275 (1989).

Miller, M. M., Wasik, S. P., Huang, G. L., Shiu, W. Y. and Mackay, D., “Ralationships Between Octanol-water Partition Coefficient and Aqueous Solubility,” Environ. Sci. Technol., Vol. 19, pp.522-529 (1985).

Okamoto, K., Tasunori, Y., Hirok, T., Masashi, T., and Akira, I., ”Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder” J. Photoch. Photobio. A., Vol. 112, pp. 264-270 (1984).

Ravichandran, L., Selvam, K., and Swaminathan, M., “Effect of oxidants and metal ions on photodefluoridation of pentafluorobenzoic acid with ZnO,” Sep. Purif. Technol., Vol.56, pp.192–198 (2007).

Ribes, A., Grimalt, J.O., Garcia, C.J.T.and Cuevas, E., “Polycyclic aromatic hydrocarbons in mountain soils of the subtropical,“J. Environ. Qual., Vol. 32, pp.977–987 (2003).

Rominder, P.S., Lin, J., Hand, D. W., Crittenden, J. C., Perram, D.L. and Mulins, M. E., ”Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water,” Water Environ. Res., Vol. 65, No. 5, pp. 655 (1993).

Schlautman, M.A. and Morgan, J.J., ”Effect of Aqueous Chemistry on The Binding of Polycyclic Aromatic Hydrocarbons by Dissolved Humic Materials,” Environ. Sci. Technol., Vol. 27, pp.961-969 (1993).

Simpson, A.J., Kingery, W.L., Shaw, D.R., Spraul, M., Humpfer, E. and Dvortsak, P., “The Application of H-1 HR-MAS NMR Spectroscopy for The Study of Structures and Associations of Organic Components at The Solid–Aqueous Interface of a Whole Soil,” Environ. Sci. Technol., Vol.35, pp.3321–3325 (2001).

Tang, W. Z. “Physicochemical Treatment of Hazardous Wastes,” Lewis Publishers , pp. 322 (2004).

Turchi, C. S.and Ollis, D. F., “Photocatalystic degradation of organic water contaminants: mechanism involving hydroxyl radical attack,” J. Catal., Vol. 122, pp. 192–478 (1990).
US EPA, “Locating and Estimating Air Emission from Sources of Polycyclic Organic Matter(POM)”, US EPA, EPA-450/4-84-007P (1987).

USEPA, “Toxic Release Inventory Public Data Release” (2000).

Voice, T. C., Rice, C. P., and Weber, W. J., “Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems,” Environ. Sci. Technol., Vol.17, pp.513-518 (1983).

Wang, Y., and Hong, C. S., “Effect of Hydrogen Peroxide, Periodate and Persulfate on Photocatalysis of 2- Chlorobiphenyl in Aqueous TiO2 Suspensions.” Water Res., pp. 4–9 (1999).

Wild, S.R., and Jones, K.C., “Polynuclear aromatic hydrocarbons in the United Kingdom environment:A Preliminary Source Inventory and Bugget,” Environ. Pollut., Vol.88, pp.91-108 (1995).

Yan, J., Wang, L., Peter, P., and Yu, H., “Photomutagenicity of 16 Polycyclic Aromatic Hydrocarbons from the US EPA Priority Pollutant List,” Mutat. Res., Vol. 557, pp.99-108 (2003).

Yue, Y. D., Hua, R. M., Tang, F., “Effect of soil particle size on distribution and photodegradation of selected pesticides in soil,” Journal of Anhui Agricultural University,China, Vol.20, pp.309-314 (1993).

Zhang L H., Li P. J., Gong Z. Q., and Oni A. A., ” Photochemical behavior of benzo[a]pyrene on soil surfaces under UV light irradiation,” Journal of Environ. Sci., Vol. 18, NO. 6 , pp.1226-1232 (2006).
王新傳,鮑氏土壤機械分析法,作物需肥診斷技術,台灣省農試所特刊13號,第27-29頁(1981)

行政院環境保護署,土壤中陽離子交換容量-醋酸納法,NIEA S202.60A。

林淵淙,「餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵」,碩士論文,國立成功大學環境工程學系,台南(2000)。

陳宏軍,「氧化鋅奈米粉末之製備與研究」,碩士論文,大同大學,台北(2004)。

徐慧宜,「混合型光觸媒降解水中4-硝基酚之研究」,碩士論文,國立雲林科技大學環境與安全衛生工程系碩士班,雲林(2005)。

Balmer, M. E., Goss, K. U., and Schwanenbach, R. P., “Photolytic transformation of organic pollutants on soil surfaces-an experimental approach,” Environ. Sci. Technol., Vol.34, pp.1240-1246 (2000).

Bircan, D., and Siddik I., “Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight,” J. Photoch. Photobio. A, pp. 263-268 (2001).

Carp, O., and Huisman, C. L. A., “Photoinduced reactivity of titanium dioxide,” Prog. Solid State Ch., Vol.32, pp.33–177 (2004).

Chiou, C. T., Kile, D. E., and Malcome, R. L., ”Soiption of vapor of some organic liquids on soil humic acid and its relation to partitioning of organic compound in soil organic matter,” Environ. Sci. Technol., Vol.22, pp.298-303 (1988).

Chu, W., Choy W.K., and So T.Y., “The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline,” J. Hazard. Maters.,Vol.141, pp.86-91 (2007).

Fujishima, A., Rao, T. N., and Tryk, D. A., “Titanium dioxide photocatalysis,” J. Photoch. Photobio. A., pp.1-21 (2000).

Huang, G. L., Zhuang, Y. Y., and Dai, S. G., “Study on photochemical transformation of PAHs deposited upon particulates,” Acta Scientiarum Naturalium Universitatis Nankainensis (1997).

Jones, K.C., Stratford, J. A., Waterhouse, K. S., and Johnston, A. E., “Polynuclear aromatic hydrocarbons in an agricultural soil: long-term changes in profile distribution,” Environ. Pollut., Vol.56, pp.337-351(1989).

Kim, D. H., and Anderson, M. A., “Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported Ti02 thin films,” J. Photoch. Photobio. A.,Vol. 94, pp. 221-229 (1996)

Liu, S., May, L., Rolando, F., Christopher, C., Ken, C., Mary, D., and Rose, A.,
“Removal of humic acid using TiO2 photocatalytic process – Fractionation and molecular weight characterisation studies,”Chemosphere, Vol.72, pp. 263–271 (2008).

Li, X. Z., Fan, C. M., and Sun, Y. P.,“Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength,”Chemosphere, Vol. 48, pp. 453–460 (2002).

Mara, C., Seaman, J. C., Jara, B. F., Mora, M. L., and Diea, M. C.,”Adsorption behavior of 2,4-dichlorophenol and pentachlorophenol in an allophonic soil.”Chemosphere, Vol.67 , pp.1354-1360 (2007).

McLean, E. O., “Soil pH and lime requirement, Methods of soil analysis. Part 2: Chemical and microbiological properties, Page A. L. et al. (eds.), Second edition, Madison, WI,” USA, Agronomy Monograph, Vol.9, pp.199-224 (1982).

Miller, G. C., and Zepp, R. G., “Extrapolating photolysis rates from the laboratory to the environment,” Residue Rev, Vol.85, pp.89-110 (1983).

Miller, G. C., Herbert, V. R., and Miile, M. J., “Photolysis of octachlorodibenzo-p-dioxin on soils: production of 2,3,7,8-TCDD,” Chemosphere,Vol.18, pp.1265-1275 (1989).

Music, S., Gotic, M., Ivanda, M., Turkovic, A., Trojko, R., Sekulic, A.,
and Furic, K., “Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure,” Mater. Sc. Eng., Vol.47, pp.33-40 (1997).

Nam, J. J., Gareth, O., Foday, M. J., Eiliv, S., Orjan, G., and Kevin, C. J., “PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter,”Chemosphere, Vol. 70, pp.1596–1602 (2008).

Ravichandran, L., Selvam, K., and Swaminathan, M., “Effect of oxidants and metal ions on photodefluoridation of pentafluorobenzoic acid with ZnO,” Sep. Purif. Technol., Vol.56, pp.192–198 (2007).
Rhoades, J. D., “Soluble salts, Methods of soil analysis (Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA.,” Madision, Wisconsin, pp.167-179 (1982).

Ribes, A., Grimalt, J.O., Garcia, C. J. T., and Cuevas, E., “Polycyclic
aromatic hydrocarbons in mountain soils of the subtropical,” Atlantic. J.
Environ. Qual., Vol. 32, pp.977–987 (2003).

Saftic, S., Fedorak, P. M., and Andersson, J. T., “Diones, sulfoxides, and sulfones from the aerobic cometabolism of methylbthiophenes by pseudomonas strain BT1,”Environ. Sci. Technol., Vol.26, pp.1759-1764 (1992).

Schwarzenbach, R. P., and WESTAKK, J., “Transport of non-polar organic conpounds from surface water to groundwater laboratory sorption studies,” Environ. Sci. Technol., Vol.11,pp.1360-1367 (1981).

Seven, O., Dindar, B., Aydemir, S., Metin, D., Ozinel, M.A., and Icli, S. a.,“Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust,” J. Photoch. Photobio. A. Vol.165,pp.103–107 (2004).

Tang, L., Tang, X. Y., Zheng, M. H., and Miao Q. L., “Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing,” Environ. Int., Vol.31,pp.822-828 (2005).

Thomas, G. W., “Exchangeable cation, Methods of soil analysis (Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA.,” Madision, Wisconsin, pp.159-165 (1982).
Tiessen, H., Bettany J. R., and Stewart J. W. B., “An improved method for the determination of carbon in soils and soil extracts by dry combustion,” Commun. Soil Sci. Plant Anal.,Vol.12, pp.211-218 (1981).
Wang, Y., and Hong, C. S., “Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions,” Water Res, Vol.33,pp.2031-2036 (1999).

Wild, S. R., and Jones, K. C., “Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget,” Environ. Pollut., Vol. 88,pp.91-108 (1995).

Wilson, S. C., and Jones, K. C.,”Bioremediation of soil contaminated with
polynuclear aromatic hydrocarbons(PAHs)” Environmental Pollution, Vol.81,pp.229-249 (1993).

Yue, Y. D., Hua, R. M., Tang, F., “Effect of soil particle size on distribution and photodegradation of selected pesticides in soil,” Journal of Anhui Agricultural University,China, Vol.20, pp.309-314 (1993).

Zhang, L.H., Li, P. J., Gong, Z. Q., and Oni A. “Photochemical behavior of benzo[a]pyrene on soil surfaces under UV light irradiation” Journal of Environmental Sciences, Vol.18, NO. 6, pp.1226-1232 (2006).
李久海、董元華、曹志洪、王輝、安琼、胡正義、楊林章、林先貴、尹睿,「6000年以來水稻土剖面中多環芳烴的分布特徵及來源初探」,土壤學報,第44卷,第1期,第41-46頁(2007)

Brunk, B. K., Jirka, G. H., and Lion, L. W., “Effects of salinity changes
and the formation of dissolved organic matter coatings on the sorption of
phenanthrene: Implications for pollutant trapping in estuaries.” Environ. Sci.
Technol.,Vol.31,pp.119-125 (1997).

Carter, C. W., and Suffet, I. H.”Binding of DDT to Dissolved Humic Materials,” Environ. Sci. Technol, Vol. 16, pp.735-740 (1982).

Chiou, C. T., Kile, D. E., and Malcome, R. L., ”Soiption of vapor of some organic liquids on soil humic acid and its relation to partitioning of organic compound in soil organic matter,” Environ. Sci. Technol, Vol.22,pp.298-303 (1988).

Daimon, T., Hirakawa, T., Kitazawa, M., Suetake, J., and Nosaka, Y.,“ Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts” Applied Catalysis A:, Vol.340, pp. 169–175 (2008).

Draper, R. B., and Fox, M. A., “Titanium dioxide photosensitized reactions studied by diifuse reflectance flash photolysis in aqueous suspensions of TiO2 powder,” Langmuir, Vol.6,pp.1396–1402 (1990).

Hirner, A. V., Pestke, F. M., Busche, U., and Eckelho, A. L.,“Testing contaminantmobility in soiks and waste materials,” J. Geochem. Explor., Vol.64, No.1-3, pp.127-132 (1998).

Huang, G.. L., Zhuang, Y. Y., and Dai, S. G., “Study on photochemical transformation of PAHs deposited upon particulates,” Acta Scientiarum Naturalium Universitatis Nankainensis (1997).

Kim, Y. J., Lee, D. H., and Ohsako, M., “Effect of dissolved humic matters on the leachability of PCDD/F from fly ash-Laboratory experiment using aldrich humic acid,”Chemosphere, Vol.47, No.6 pp.599-605 (2002).

Lee, C. L., Kuo, L. J., Wang, H. J. and Hsieh, P. C., “Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances:three-stage variation model,” Water Res., Vol. 37, pp.4250-4258.

Liu, S., Lim, M., Fabris, R., and Chow, C., “Removal of humic acid using TiO2 photocatalytic process – Fractionation and molecular weight characterisation studies, ” Chemosphere, Vol.72,pp.263–271 (2008).

Mara, C., Seaman, J. C., Jara, B. F., Mora, M. L. and Diea, M. C.,”Adsoption behavior of 2,4-dichlorophenol and pentachlorophenol in an allophonic soil,” Chemosphere, Vol. 67,pp 1354-1360 (2007).

Mulder, E., Brouwer, J. P., Blakmeer, J., and Frenay, J.W., “Immobilisation of PAH in Waste materials,” Waste Management, Vol.21, pp.247-253 (2001).

Puspendu, D., Namita, D., Somasundaran, P., Jockusch, S., and Nicholas, J. T.,
“ Conformational Changes of Pyrene-Labeled Polyelectrolytes with pH: Effect of
Hydrophobic Modifications” J. Phys. Chem. B, Vol.109, pp.20714-20718 (2005).

Ravichandran, L., Selvam, K., and Swaminathan, M., “Effect of oxidants and metal ions on photodefluoridation of pentafluorobenzoic acid with ZnO,” Sep. Purif. Technol., Vol.56, pp.192–198 (2007).

Schwarzenbach, R. P., and WESTAKK, J., ”Transport of non-polar organic conpounds from surface water to groundwater laboratory sorption studies,” Environ. Sci. Techno.l, Vol.11, pp.1360-1367 (1981).

Schlautman, M.A. and Morgan, J.J., ”Effect of Aqueous Chemistry on The Binding of Polycyclic Aromatic Hydrocarbons by Dissolved Humic Materials,” Environ. Sci. Technol., Vol. 27, pp.961-969 (1993).


Sheng, W., Jincai, Z., Guoying, S., Jiamo, F., and Peng , P., ”Photocatalytic reactions of Pyrene at TiO2/ Water interfaces,” Chemosphere., Vol. 50, pp.111-119 (2003).

Wang, Y., and Hong, C.S., “The Photodegradation of 2-Chlorophenol in Aqueous TiO2 Suspensions: The Effect of Hydrogen Peroxide Addition.” Water res., pp. 4–9 (1999).

Yang, S. Y. N., Connell, D. W., Hawker, D. W., and Kayal, S. I., “Polycyclic aromatic hydrocarbons in air, soil and vegetation in the vicinity of an urban roadway,” Sci. Total Environ., Vol.102, pp.229-240 (1991)

Yue, Y. D., Hua, R. M., Tang, F., “Effect of soil particle size on distribution and photodegradation of selected pesticides in soil,” Journal of Anhui Agricultural University,China, Vol.20, pp.309-314 (1993).

Zhang F. L., Zhao, J. C., Shen T., Hidaka. H., Pelizzetti. E., and Serpone, N., “TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradationkinetics of erosion in TiO2 dispersions under visible light irradiation,” Appl. Catal. B-Environ., Vol.15,pp.147-156 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔