跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉貫中
研究生(外文):Kuan-Chung Liu
論文名稱:逐步真實檢定應用於技術分析的有效性研究
論文名稱(外文):Using Stepwise Multiple Testing to Examine the Performance of Technical Analyses
指導教授:顏盟峯顏盟峯引用關係許英麟許英麟引用關係
指導教授(外文):Meng-Feng YenYing-Lin Hsu
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:財務金融系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:77
中文關鍵詞:量能潮量能策略交易規則移動平均線技術分析指標SRC檢定法濾嘴法則
外文關鍵詞:the moving average (MA)filter ruleSRCtechnical analysistrading rulethe momentum strategy of volume ( MSV)the on balance volume ( OBV)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
本研究是從『The Institute for Financial Markets』之資料庫的八大類別,挑選出成交量最大的商品,利用Romano and Wolf (2005)的逐歩真實檢定法(SRC),應用於三大交易所的八大金融商品市場,以檢驗濾嘴法則(FR)、移動平均線(MA)、量能潮(OBV)、量能策略(MSV)等四大類之技術分析指標組合成3,770條之交易規則,以模擬交易方式,於產生交易訊號後,扣除進出場之交易成本去計算其報酬率,以驗證是否真具有獲取超額報酬的能力。在檢驗後我們發現此3,770條之交易規則,在這八大商品市場,並無法拒絕虛無假說,故此八大市場為具有效率的市場,此3,770條之交易規則,並無獲取超額報酬的能力。另外我們探究其因為,若交易規則內含有過多不具解釋能力的交易規則,會拉高臨界值,而造成無法拒絕虛無假說的檢定結果。而此3,770條之交易規則中,MSV類之交易規則對於操作績效顯的有著大好大壞之表現,但仍以負報酬的操作績效較正報酬的操作績效為多,而MA類之交易規則對於操作績效就顯得較MSV穩定。
Abstract
This research is to pick out the commodities with the biggest amounts of transactions from eight major classifications of the database of " The Institute for Financial Markets ", and applying Romano and Wolf (2005) Stepwise Multiple Testing (SRC) to the eight financial commodity markets in three major exchanges. We use the four technical analysis indicators, the filter rule (FR)、the moving average (MA)、the on balance volume ( OBV) and the momentum strategy of volume ( MSV), to make up into these 3,770 rules of transactions. In order to prove whether these rules have ability to obtain excess return or not, we examine them by way of imitating the transaction. When the trading signal is found, we delete the trading cost to calculate its return. After examining, we find these 3,770 rules of transactions are unable to reject null hypothesis in the eight major markets. So the eight major markets are efficient, and these 3,770 rules of transactions have not obtained the ability of the excess return. We probe into the cause of the above result and find out that if the rules of transactions contain too many rules without explainable ability, it will draw high the critical value and result in the examination that is unable to reject null hypothesis. Among these 3,770 rules of transactions, it is obvious that rules of MSV affect the operation performance much better or much worse, but the operation performances with negative return are more frequent than the operation performance with positive return. Rules of MA are more stable than MSV for the operation performance.
目 錄
中文摘要......................... Ⅰ
英文摘要......................... Ⅱ
謝誌........................... Ⅲ
目錄........................... Ⅳ
表目錄.......................... Ⅴ
圖目錄.......................... Ⅵ
第一章 緒論 ....................... 1
 第一節 研究背景與動機 ................ 1
 第二節 研究目的 ................... 4
 第三節 研究架構.................... 6
第二章 文獻探討..................... 7
第三章 研究方法.................... 13
 第一節 資料說明與來源................ 13
 第二節 交易法則與買賣時點的決定........... 16
第三節 資料探勘(Data-Snooping)........... 23
第3.1節 White’s RC(White’s Reality Check).......25
第3.2節 Hansen SPA test (Test for Superior Predictive Ability) 27
第3.3節 RW的Stepwise Multiple Testing(SRC)法.... 29
第四章 實證結果與分析................. 34
第一節 報酬率之計算................. 34
第二節 以SRC檢定法檢驗交易規則之結果分析...... 36
第五章 結論與建議................... 43
第一節 結論..................... 43
第二節 未來研究建議................. 44
附錄.......................... 45
表 目 錄
表3-1-1 模擬交易所使用之金融商品名稱及資料起訖日期明細表..14  
表3-1-2 八大金融商品之交易手續費及其每檔跳動之價值明細表..14
表3-2-1 模擬交易所使用之指標參數明細表...........22
表4-2  BP之真實值檢定統計量 ............... 38
表4-3 拔靴抽樣後拒絕虛無假說之情形表...........40
表4-4  四大類交易規則對真實值檢定統計量最大值及最小值之分析41
表4-5   四大類交易規則對真實值檢定統計量為正值之分析....41
圖 目 錄
圖1-1研究架構與流程.................. 6
參考文獻

10. Alexander, S. S. (1961). Price movement in speculative markets: trends or random walks. Industrial Management Review, 2, 7-26.

20. Alexander, S. S. (1964). Price movement in speculative markets: trends or random walks. No.2, Industrial Management Review, 5, 25-46.

30. Bishara, Halim I.Establishing A Modified Dow Theory for Canada and Testing Its Buy and Sell Signals Against A Buy and Hold Strategy.Akron Business and Economic Review, Winter 1977, pp.43-51.

40. Brock, W., Lakonishok J. and LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. Journal of Finance, 47, 1731-1764.

50. Blume, L., D. Easley, and M. O’Hara(1994).Market Statistics and Technical Analysis: The Role of Volume.Journal of Finance, 47,pp.153-181.


60. Brown, S. J., Goetzmann, W. N. and Kumar, A. (1998). The Dow theory:William Peter Hamilton’s track record reconsidered. Journal of Finance, 53,1311-1333.

71.Brock, W., Lakonishok J. and LeBaron, B. (1992). Simple technical tradingrules and the stochastic properties of stock returns. Journal of Finance, 47,1731-1764.

80. COWLES, Alfred 3rd, Can Stock Market Forecasters Forecast?, Econometrica, Volume 1, Issue 3 (Jul., 1933), 309-324

90.Fama, E. F. (1970). Efficient capital markets: a review of theory and 1.1empirical work. Journal of Finance, 25, 383-417.

10. Fama, E. F. and Blume, M. E. (1966). Filter rules and stock market trading. 1Journal of Business, 39, 226-241.

11. Gunasekarage, A. and D. M. Power (2001). The profitability of moving average trading rules in South Asian stock markets. Emerging Markets Review, 2,17-33.


12. Hamilton, W. P. (1998). The Stock Market Barometer, New York: John 1Wiley& Sons, Inc. (Originally published: New York : Harper & Brothers, 11922.)

13. Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business and Economic Statistics, 23(4), 365-380.

14. Hsu, J., Chen, C. and Yeh, J. Y. (2006). The performance of simple technical rules on individual stocks. Unpublished manuscript, National Chung-Hsing University, Taiwan.

15. Hsu, P. H. and Kuan, C. M. (2005). Reexamining the profitability oftechnical analysis with data snooping checks, Journal of FinancialEconometrics, 3(4), 606-628.

16. James, F. E. (1968). Monthly mving arages: a effective investment tool? Journal of Financial and Quantitative Analysis, 3, 315-326.
17. Jensen, M. C. (1967). Random walks: rality or myth-comment. Financial Analysts Journal, 23(6), 77-85.

18. Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394-419.

19. Politis, D.N. and J.P. Romano (1992) .A Circular Block-Resampling Procedure for Stationary Data. in Exploring the Limits of Bootstrap, ed. By R. LePage and L. Billard, New York: Johan Wiley and Sons, 263-270.

20. Politis, D.N. and J.P. Romano (1994) .The Stationary Bootstrap. Journal of the American Statistical Association, 89, 1303-1313

21. J.P. Romano and M. Wolf (2005).Stepwise Multiple Testing as Formalized Data Snooping. Econometrica, 73, 1237-1282.

22. Sullivan, R., Timmwemann, A. and White, H. (1999). Data-snooping, technical trading rule performance, and the Bootstrap. The Journal of Finance, 54, 1647-1691.

23. Van Horne, James C.and Parker, George G.C.(1968). Technical Trading Rules:A Comment . Financial Analysts Journal, XXXIV, 128-132.

24. White, H. (2000). A reality check for data snooping. Econometrica, 68,1097-1126.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊