|
參考文獻
10. Alexander, S. S. (1961). Price movement in speculative markets: trends or random walks. Industrial Management Review, 2, 7-26.
20. Alexander, S. S. (1964). Price movement in speculative markets: trends or random walks. No.2, Industrial Management Review, 5, 25-46.
30. Bishara, Halim I.Establishing A Modified Dow Theory for Canada and Testing Its Buy and Sell Signals Against A Buy and Hold Strategy.Akron Business and Economic Review, Winter 1977, pp.43-51.
40. Brock, W., Lakonishok J. and LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. Journal of Finance, 47, 1731-1764.
50. Blume, L., D. Easley, and M. O’Hara(1994).Market Statistics and Technical Analysis: The Role of Volume.Journal of Finance, 47,pp.153-181.
60. Brown, S. J., Goetzmann, W. N. and Kumar, A. (1998). The Dow theory:William Peter Hamilton’s track record reconsidered. Journal of Finance, 53,1311-1333.
71.Brock, W., Lakonishok J. and LeBaron, B. (1992). Simple technical tradingrules and the stochastic properties of stock returns. Journal of Finance, 47,1731-1764.
80. COWLES, Alfred 3rd, Can Stock Market Forecasters Forecast?, Econometrica, Volume 1, Issue 3 (Jul., 1933), 309-324
90.Fama, E. F. (1970). Efficient capital markets: a review of theory and 1.1empirical work. Journal of Finance, 25, 383-417.
10. Fama, E. F. and Blume, M. E. (1966). Filter rules and stock market trading. 1Journal of Business, 39, 226-241.
11. Gunasekarage, A. and D. M. Power (2001). The profitability of moving average trading rules in South Asian stock markets. Emerging Markets Review, 2,17-33.
12. Hamilton, W. P. (1998). The Stock Market Barometer, New York: John 1Wiley& Sons, Inc. (Originally published: New York : Harper & Brothers, 11922.)
13. Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business and Economic Statistics, 23(4), 365-380.
14. Hsu, J., Chen, C. and Yeh, J. Y. (2006). The performance of simple technical rules on individual stocks. Unpublished manuscript, National Chung-Hsing University, Taiwan.
15. Hsu, P. H. and Kuan, C. M. (2005). Reexamining the profitability oftechnical analysis with data snooping checks, Journal of FinancialEconometrics, 3(4), 606-628.
16. James, F. E. (1968). Monthly mving arages: a effective investment tool? Journal of Financial and Quantitative Analysis, 3, 315-326. 17. Jensen, M. C. (1967). Random walks: rality or myth-comment. Financial Analysts Journal, 23(6), 77-85.
18. Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394-419.
19. Politis, D.N. and J.P. Romano (1992) .A Circular Block-Resampling Procedure for Stationary Data. in Exploring the Limits of Bootstrap, ed. By R. LePage and L. Billard, New York: Johan Wiley and Sons, 263-270.
20. Politis, D.N. and J.P. Romano (1994) .The Stationary Bootstrap. Journal of the American Statistical Association, 89, 1303-1313
21. J.P. Romano and M. Wolf (2005).Stepwise Multiple Testing as Formalized Data Snooping. Econometrica, 73, 1237-1282.
22. Sullivan, R., Timmwemann, A. and White, H. (1999). Data-snooping, technical trading rule performance, and the Bootstrap. The Journal of Finance, 54, 1647-1691.
23. Van Horne, James C.and Parker, George G.C.(1968). Technical Trading Rules:A Comment . Financial Analysts Journal, XXXIV, 128-132.
24. White, H. (2000). A reality check for data snooping. Econometrica, 68,1097-1126.
|