跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉峻儒
研究生(外文):Chun-Ju Yeh
論文名稱:以WordNet與FCA為基礎之本體論合併之研究
論文名稱(外文):A Study on Ontology Merging Based on WordNet and FCA Techniques
指導教授:陳榮靜陳榮靜引用關係
指導教授(外文):Rung-Ching Chen
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:77
中文關鍵詞:正規概念分析模糊理論本體論合併模糊本體論本體論對應
外文關鍵詞:Fuzzy ontologyFormal Concept AnalysisOntology mergeOntology mappingFuzzy theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
目前建構本體論的工具與方法很多,而建構出來的本體論也會有所差異,在相同的領域下,如果直接使用已被建構好的本體論,可以節省相當多建構本體論的成本,而在相同領域下,本體論的整合便成為一項重要課題。本篇論文主要提出,由上而下以模糊正規概念分析為基礎及擷取WordNet資訊的本體論整合方法,稱為FFCA-Merge (Fuzzy Formal Concept Analysis-Merge)。此架構的流程是先將需整合的本體論進行預先處理,並從WordNet內容中獲取資訊進行合併及校正,再者利用模糊概念分析技術來彌補WordNet無法完成的合併及校正工作,最後產生模糊本體論,目前領域本體論的合併方法主要還是針對不具有模糊概念的本體論,而透過FFCA-Merge合併之後,可以轉換成模糊本體論。在處理不明確資料時,模糊本體論具有更強大的彈性與優勢。最後在實驗的部份也可證明我們提出的方法確實具有效用。
Many different contents and structures exist in constructed ontologies, including those that exist in the same domain. If extant domain ontologies can be used, time and money can be saved. However, domain knowledge changes fast. In addition, the extant domain ontologies may require updates to solve domain problems. The reuse of extant ontologies is an important topic for their application. Thus, the integration of extant domain ontologies is of considerable importance. In this paper, we propose a new method for combining the WordNet and Fuzzy Formal Concept Analysis (FFCA) techniques for merging ontologies with the same domain, called FFCA-Merge. Through the method, two extant ontologies can be converted into a fuzzy ontology. The new fuzzy ontology is more flexible than a general ontology. The experimental results indicate that our method can merge domain ontologies effectively.
摘要 III
Abstract IV
致謝 V
Table of Contents VII
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Objective 2
1.3 Thesis Framework 2
Chapter 2 Literature Review 3
2.1 Ontology and Fuzzy Ontology 3
2.2 Ontology Mapping Categories 4
2.3 Survey on Domain Ontology Merge and Alignment 5
2.4 Related Techniques 8
2.4.1 WordNet 9
2.4.2 Formal Concept Analysis (FCA) 10
2.4.3 Fuzzy Formal Concept Analysis (FFCA) 14
2.4.4 FCA-Merge 17
Chapter 3 Ontology Merging for Fuzzy Ontology Based on WordNet and FCA Techniques 19
3.1 Pre-processing 20
3.2 Ontology Merge Phase 22
3.2.1 Class Name Merging 23
3.2.2 WordNet Alignment 24
3.2.3 FFCA Alignment 28
3.2.4 Generation Fuzzy Ontology 34
Chapter 4 Experiments and Discussions 38
4.1 Experimental Environment and Data Sources 38
4.2 Comparisons of Each Element 44
4.2.1 Influence of Number of Documents 44
4.2.2 Influence of Direct Mapping and Lattice Calculation Strategies 47
4.2.3 Influence of Different Domains 52
4.3 Experimental Results 52
Chapter 5 Conclusions and Future Works 70
References 72

List of Tables
Table 1 An example of FCA-Context ............................................................................. 13
Table 2 The membership value of FFCA-Context......................................................... 15
Table 3 The FFCA-Context is removed from membership values lower than 0.6 . 16
Table 4 The baseball ontology ......................................................................................... 39
Table 5 The academic ontology....................................................................................... 40
Table 6 The details of FFCA-Merge ............................................................................... 41
Table 7 The number of concepts necessarily merged or aligned .................................. 42
Table 8 The summary of number of documents for the baseball ontology .................. 46
Table 9 The summary of number of documents for the academic ontology ................ 47
Table 10 The summary of two strategies for the baseball ontology ............................. 50
Table 11 The summary of two strategies for the academic ontology ........................... 51
Table 12 The summary of experimental results for the baseball ontology ................... 54
Table 13 The summary of experimental results for the academic ontology................. 55
Table 14 The relationships between expert concepts and system keywords ................ 57
Table 15 Evaluate the merging results ............................................................................ 59
Table 16 The relationships of two ontologies ................................................................. 64

List of Figures
Figure 1 An example of ontology and fuzzy ontology ..................................................... 4
Figure 2 An example of WordNet contents .................................................................... 10
Figure 3 A FCA-Concept lattice ...................................................................................... 14
Figure 4 The FFCA-Concept lattice got from Table 3................................................... 16
Figure 5 A flow chart of FCA-Merge ............................................................................. 17
Figure 6 The workflow of FFCA with WordNet ........................................................... 20
Figure 7 The framework of pre-processing .................................................................... 22
Figure 8 Sibling relationship ............................................................................................ 26
Figure 9 An example of class-name merging and FFCA mapping .............................. 27
Figure 10 The workflow of FFCA alignment ................................................................ 30
Figure 11 An example of calculation similarity ............................................................. 32
Figure 12 An example of a translation concept lattice ................................................... 33
Figure 13 The information in our fuzzy ontology .......................................................... 36
Figure 14 An example of our fuzzy ontology ................................................................. 37
Figure 15 Number of documents for the baseball ontology .......................................... 45
Figure 16 Number of documents for the academic department ontology .................... 46
Figure 17 DMS and LCS strategies for the baseball domain ........................................ 49
Figure 18 DMS and LCS strategies for the academic department domain .................. 49
Figure 19 The result of FFCA alignment (Baseball Domain) ....................................... 53
Figure 20 The result of FFCA alingment (Academic Domain) .................................... 53
Figure 21 The concept lattice of a baseball ground (baseball ontology) ...................... 60
Figure 22 The concept lattice of a staff on level 2 (academic department) .................. 60
Figure 23 The concept lattice of a staff on level 3 (academic department) .................. 61
Figure 24 The concept lattice of a teaching faculty on level 2 (academic department) . 61
Figure 25 The concept lattice of a teaching faculty on level 3 (academic department) . 62
Figure 26 Baseball Domain Ontology_Base Ontology ................................................. 66
Figure 27 Baseball Domain Ontology_Revision Ontology........................................... 67
Figure 28 Academic Department Domain Ontology_Base Ontology.......................... 68
Figure 29 Academic Position Domain Ontology_Revision Ontology ......................... 69
[1]M. Abulaish and L. Dey(2006), “Interoperability among Distributed Overlapping Ontologies – A Fuzzy Ontology Framework.” Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 397-403.
[2]H. Alani, S. Kim, D. Millard, M. Weal, W. Hall, P. Lewis, and N. Shadbolt(2003), “Automatic Ontology-Based Knowledge Extraction from Web documents,” IEEE Intelligent Systems, vol. 18, no. 1, pp. 14-21.
[3]T. Berners-Lee, J. Hendler, and O. Lassila(2001), “The Semantic Web” Scientific American, pp. 34-43.
[4]G. Birkoff(1976), “Lattice Theory,” American Mathematical Society, Providence.
[5]H. C. Chalupsky(2000), “Ontomorph: A Translation System for Symbolic Knowledge,” Proceedings of the 7th International Conference on Principles of Knowledge Representation and Reasoning, pp. 471-482.
[6]R. C. Chen and C. H. Chuang(2008), “Automating Construction of a Domain Ontology Using a Projective Adaptive Resonance Theory (PART) Neural Network and Bayesian Network. Expert Systems” The Journal of Knowledge Engineering(SCI).
[7]R. C. Chen, C. H. Chuang, and C. C. Tseng(2006), “Constructing an Ontology Automatically by Projective ART Neural Network,” International Computer Symposium (ICS 2006).
[8]N. Choi, I. Y. Song, and H. Han(2006), “A Survey on Ontology Mapping,” ACM SIGMOD Record, Vol. 35, No. 3, pp. 34-41.
[9]R. Cole, and G. Stumme(2000), “CEM—a Conceptual Email Manager,” Proceedings of the International Conference on Computational Science, pp. 438-452.
[10]B. Ganter and G. Stumme(2003), “Creation and Merging of Ontology Top-Levels,” Proceedings of the International Conference on Computational Science (ICCS ’03), pp. 131-145.
[11]B. Ganter and R. Wille(1997), “Formal Concept Analysis: Mathematical Foundations,” Springer-Verlag New York, Inc. Secaucus, NJ, USA.
[12]A. M. George(1995), “WordNet: a lexical database for English,” Communications of the ACM, vol. 38, no. 11, pp. 39-41.
[13]T. Gruber(1993), “Translation approach to portable ontology specifications,” Knowledge Acquisition, vol. 5, pp. 199-220.
[14]N. Guarino, C. Masolo, and G. Vetere(1999), “OntoSeek: Content-based Access to the Web,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 70-90.
[15]J. Hendler(2001), “Agents and the Semantic Web,” IEEE Intelligent Systems Journal, pp. 30-37.
[16]A. Hotho, A. Maedche, and S. Staab(2001), “Ontology-based text clustering,” Proceedings of the IJCAI-2001 workshop text learning: Beyond supervision.
[17]R. Ichise, H. Takeda, and S. Honiden(2001), “Rule Induction for Concept Hierarchy Alignment,” Proceedings of the Workshop on Ontologies and Information Sharing at the 17th International Joint Conference on Artificial Intelligence (IJCAI), pp. 26-29.
[18]K. Jones(1999), View Mail Users Manual, http://www.wonderworks.com/vm.
[19]Y. H. Kalfoglou and B. Hu(2005), “CROSI Mapping System (CMS) Results of the 2005 Ontology Alignment Contest,” K-CAP Integrating Ontologies Workshop, pp. 77-85.
[20]R.E. Kent and C. Neuss(1995), “Creating a Web Analysis and Visualization Environment,” ComputerNetworks and ISDN Systems, vol. 28, no. 1-2, pp. 109-117.
[21]P. Lambrix and H. Tan(2006), “SAMBO-A system for aligning and merging biomedical ontologies,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 4, pp. 196-206.
[22]C. S. Lee, Y. F. Kao, Y. H. Kuo, and M. H. Wang(2005), “Automated Ontology Construction for Unstructured Text Documents,” (SCI) Data & Knowledge Engineering.
[23]C. S. Lee, Z. W. Jian, and L. K. Huang(2005), “A Fuzzy Ontology and Its Application to News Summarization,” (SCI) IEEE Transactions on Systems, Man and Cybernetics Part B, vol. 35, no. 5, pp. 859-880.
[24]T. Liebig and O. Noppens(2005), “ONTOTRACK: A Semantic approach for Ontology Authoring,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 3, pp. 116-131.
[25]D. McGuinness, R. Fikes, J. Rice, and S. Wilder(2000), “The Chimaera Ontology Environment,” Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 1123-1124.
[26]N. Noy and M. Musen(1999), “Smart: Automated Support for Ontology Merging and Alignment,” Proceedings of the Twelfth Banff Workshop on Knowledge Acquisition, Modeling, and Management.
[27]N. Noy and M. Musen(2001), “Anchor-PROMPT: Using Non-Local Context for Semantic Matching,” Proceedings of IJCAI 2001 Workshop on Ontology and Information Sharing, pp. 63-70.
[28]N. Noy and M. Musen(2000), “PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment,” Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 450-455.
[29]W. Petersen(2002), “A Set-Theoretical Approach for the Induction of Inheritance Hierarchies,” Theoretical Computer Science, vol. 51.
[30]U. Priss(2003), “Linguistic Applications of Formal Concept Analysis,” Proceedings of the 1th International Conference. Formal Concept Analysis.
[31]T. T. Quan, S. C. Hui, and A.C.M. Fong(2006), ” Automatic fuzzy ontology generation for semantic help-desk support,” IEEE Transactions on Industrial Informatics, vol. 2, no. 3, pp. 155 – 164.
[32]T. T. Quan, S. C. Hui, A.C.M. Fong, and T. H. Cao(2006), “Automatic Fuzzy Ontology Generation for Semantic Web,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 6, pp. 842-856.
[33]D. Richards and P. Compton(1997), “Combining Formal Concept Analysis and Ripple Down Rules to Support Reuse,” Proceedings of the 9th International Conference Software Eng. and Knowledge Eng. (SEKE ’97).
[34]C. Schmitz, S. Staab, R. Studer, G. Stumme, and J. Tane(2002), “Accessing Distributed Learning Repositories through a Courseware Watchdog,” Proceedings of the E-Learn 2002 World Conference E-Learning in Corporate, Government, Healthcare, and Higher Education, pp. 909-915.
[35]C. Sporleder(2002), “A Galois Lattice Based Approach to Lexical Inheritance Hierarchy Learning,” Proceedings of the International Conference ECAI 2002 Workshop Machine Learning and Natural Language Processing for Ontology Eng. (OLT ’02).
[36]G. Stumme and A. Maedche(2001), “FCA-Merge: Bottom-Up Merging of Ontologies,” Proceeding of the International Joint Conference on Artificial Intelligence IJCA101, pp. 225-230.
[37]Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Stider, and D. Wenke(2002), “OntoEdit: Collaborative Ontology Development for the Semantic Web,” Proceedings of the First International Semantic Web Conference.
[38]R. Wille(1982), “Restructuring lattice theory: an approach based on hierarchies of concepts,” I.Rival (Ed.), Symposium on Ordered Sets, Reidel.
[39]Academic department ontology, http://www.cs.umd.edu/projects/plus/DAML/onts/cs1.0.daml
[40]Academic position ontology, http://www.daml.ri.cmu.edu/ont/homework/cmu-ri-employmenttypes-ont.daml
[41]Baseball ontology, http://www.daml.org/2001/08/baseball/baseball-ont
[42]Cycorp, http://www.cyc.com/
[43]DAML Ontology Library, http://www.daml.org/2001/08/baseall/baseball-ont.daml
[44]Formal Concept Analysis, http://www.upriss.org.uk/fca/fca.html
[45]Suggested Upper Merged Ontology, http://www.ontologyportal.org/
[46]W3C, http://www.w3.org/2001/sw/
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top