(3.232.129.123) 您好!臺灣時間:2021/02/26 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉騰元
研究生(外文):YEH, Teng-yuan
論文名稱:限氮條件下不同溫度對BacillusmegateriumYU-1生合成PHB之影響
論文名稱(外文):Effect of Temperature on the Biosynthesis of PHB by Bacillus megaterium YU-1 under Nitrogen-limiting Fermentation
指導教授:凃瑞澤凃瑞澤引用關係余世宗余世宗引用關係
指導教授(外文):Jui-Rze TooShin-Tsung Yu
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:97
中文關鍵詞:聚羥基烷酯類限氮批次發酵
外文關鍵詞:polyhydroxyalkanoatesPHBnitrogen-limitingbatch fermenter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以微生物發酵生合成PHB,使用之菌株為Bacillus megaterium YU-1,在氮源限制的生長環境下,於不同溫度 (26、30及35℃)進行批次培養,探討溫度對生質量、PHB產量及營養源消耗之影響。實驗結果顯示,於30℃下不調控pH值之培養,生質量與PHB產量分別為6.27與4.26 g/L,PHB為菌體生質量的68%;於26℃下,生質量與PHB產量分別為7.72與3.54 g/L,PHB為菌體生質量的48%;於35℃下,生質量與PHB產量分別為5.74與2.29 g/L,PHB佔菌體生質量為41%,其中以30℃為最佳之培養條件。
在調控pH為5.5時,於不同溫度下進行批次培養,探討溫度對菌體生質量、PHB產量及營養源消耗之影響。實驗結果顯示,於26℃下培養,可得最高之生質量與PHB產量,分別為8.31與5.59 g/L;但在PHB佔菌體之百分比中,以培養於30℃下,PHB佔菌體生質量(74%)為最高,而生質量與PHB產量分別為6.33與4.71 g/L;於35℃中,由於培養溫度較高,菌體的生長週期較短,生質量與PHB無法持續累積,因此產量較其它培養溫度下為低。
實驗結果顯示,於不同溫度下調控pH 為5.5之培養,菌體生質量與PHB產量,比不調控pH值的條件下來得高,其中又以30℃ pH 5.5為最佳之生長環境。
In this study, Bacillus megaterium YU-1 was cultivated in a batch fermenter under a nitrogen-limiting condition to explore the effect of temperature (26, 30 and 35℃) on microbial growth, PHB production and consumption of nutrition sources. For the case without pH control, the biomass and PHB reached 7.72 and 3.54 g/L, respectively, and PHB/Biomass, 48% at 26℃; the biomass and PHB reached 6.27 and 4.26 g/L, and PHB/Biomass, 68%, at 30℃; the biomass and PHB reached 5.74 and 2.29 g/L, and PHB/Biomass 41% at 35℃. From the above, 30℃ seemed to be the best culture condition among the three to produce PHB.
For the case with pH control at 5.5, Bacillus megaterium YU-1 was also cultivated in a batch fermenter under various temperatures (26, 30 and 35℃). Experimental results showed that, at 26℃, the biomass and PHB reached 8.31 and 5.59 g/L, respectively, which were the highest among the three temperatures. But the PHB/Biomass ratio ever reached 74%, being the best during cultivation, at 30℃, with a biomass of 6.33 g/L and a PHB of 4.71 g/L. As the temperature was raised to 35℃, the generation time became shorter; however, the biomass and PHB did not continue to accrue. Therefore, a lower temperature seemed to be better for the microbe to produce PHB.
In summary, microbial growth and PHB production were better for the case with pH control at 5.5, and 30℃ was the best among the three temperatures to produce PHB.
封面內頁
簽名頁
授權書iii
中文摘要iv
英文摘要v
誌謝vi
目錄vii
圖目錄x
表目錄xii
1. 緒論1
2. 文獻回顧2
2.1 前言2
2.1.1 石化塑膠概述2
2.1.2 生物可分解性塑膠5
2.2 PHAs6
2.2.1 PHAs之介紹6
2.2.2 PHAs的結構與性質6
2.2.3 可生合成PHA之菌株9
2.2.4 PHAs的代謝過程14
2.3 Bacillus megaterium生合成PHAs之探討17
3. 材料與方法22
3.1 實驗材料22
3.1.1 菌株22
3.1.2 實驗藥品22
3.1.3 儀器設備24
3.2 培養條件與步驟26
3.2.1 培養基26
3.2.2 菌株活化26
3.2.3 繼代培養26
3.2.4 預培養30
3.2.5 批次發酵培養30
3.3 分析方法31
3.3.1 菌體之生質量31
3.3.2 葡萄糖之測定31
3.3.3 氮源之測定33
3.3.4 代謝酸之測定34
3.3.5 PHB含量測定34
4. 結果與討論37
4.1 不同溫度對不調控pH之批次發酵培養37
4.1.1 26℃之批次發酵培養37
4.1.2 30℃之批次發酵培養41
4.1.3 35℃之批次發酵培養49
4.1.4 不同培養溫度之比較55
4.2 在控制pH為5.5條件下探討批次發酵PHB之影響60
4.2.1 26℃之批次發酵培養60
4.2.2 30℃之批次發酵培養62
4.2.3 35℃之批次發酵培養68
4.2.4 不同培養溫度之比較73
4.3 不調控pH與pH 5.5下培養Bacillus megaterium YU-1之比較76
5. 結論82
5.1 結論82
5.2 展望83
參考文獻84
附錄89
圖目錄
圖2.1 Alcaligenes eutrophus 生產 PHA 的合成與降解代謝路徑17
圖3.1 實驗架構圖23
圖3.2 樣品分析流程圖32
圖4.1 26℃不調控pH之批次發酵槽培養Bacillus megaterium YU-1之生質量、PHB、葡萄糖及氮的變化39
圖4.2 26℃不調控pH之批次發酵培養Bacillus megaterium YU-1之代謝酸變化42
圖4.3 30℃不調控pH之批次發酵培養Bacillus megaterium YU-1之生質量、PHB、葡萄糖及氮的變化(硝酸銨:1.5 g/L)44
圖4.4 30℃不調控pH之批次發酵槽培養Bacillus megaterium YU-1之生質量、PHB、葡萄糖及氮的變化(硝酸銨:0.75 g/L)46
圖4.5 30℃不調控pH之批次發酵培養Bacillus megaterium YU-1之代謝酸變化50
圖4.6不同硝酸銨濃度批次發酵培養Bacillus megaterium YU-1之PHB與PHB含量之變化51
圖4.7 35℃不調控pH之批次發酵槽培養Bacillus megaterium YU-1之生質量、PHB、葡萄糖及氮的變化53
圖4.8 35℃不調控pH之批次發酵培養Bacillus megaterium YU-1之代謝酸變化56
圖.4.9 不同溫度批次發酵培養Bacillus megaterium YU-1之生質量與PHB變化57
圖4.10 不同溫度批次發酵培養Bacillus megaterium YU-1之PHB佔菌體生質量百分比的變化59
圖4.11 26℃ pH5.5之批次發酵槽培養Bacillus megaterium YU-1之生質量、PHB、葡萄糖及氮源的變化61
圖4.12 26℃ pH5.5之批次發酵培養Bacillus megaterium YU-1之代謝酸變化64
圖4.13 30℃ pH5.5之批次發酵槽培養Bacillus megaterium YU-1之生質量、PHB、葡萄糖及氮源的變化66
圖4.14 30℃ pH5.5之批次發酵培養Bacillus megaterium YU-1之代謝酸變化69
圖4.15 35℃ pH5.5之批次發酵槽培養Bacillus megaterium YU-1之生質量、PHB、葡萄糖及氮源的變化71
圖4.16 35℃ pH5.5之批次發酵培養Bacillus megaterium YU-1之代謝酸變化74
圖4.17 不同溫度批次發酵培養Bacillus megaterium YU-1之生質量與PHB變化75
圖4.18 不同溫度批次發酵培養Bacillus megaterium YU-1之PHB佔菌體生質量百分比的變化77
表目錄
表2.1 各國廢棄塑膠佔都市垃圾含量之比較4
表2.2 微生物生合成PHAs之限制營養源7
表2.3 經由Alcaligenes sp. A-04生合成的三共聚合物的熱特性10
表2.4 經由Alcaligenes sp. A-04生合成三共聚合物的機械特性11
表2.5 能生合成PHB的微生物12
表2.6 利用基因轉殖菌株生合成PHAs15
表2.7 不同碳源培養B. megaterium於MSM培養基中對細胞濃度及PHB累積之影響19
表2.8 不同氮源培養B. megaterium於MSM培養基中對細胞濃度及PHB累積之影響20
表2.9 在不同溫度下培養Bacillus sp. INT005, B. megaterium ATCC 11561, 及R. eutropha ATCC 17699 生合成PHA之比較21
表3.1 基礎培養基的組成27
表3.2 微量金屬元素的組成28
表3.3 限氮培養基的組成29
表4.1 26℃不調控pH之批次發酵培養Bacillus megaterium YU-1之生質量、PHB產率及葡萄糖消耗速率40
表4.2 30℃不調控pH之批次發酵培養Bacillus megaterium YU-1 之生質量、PHB產率及葡萄糖消耗率(硝酸銨:1.5 g/L)45
表4.3 30℃不調控pH之批次發酵培養Bacillus megaterium YU-1 之生質量、PHB產率及葡萄糖消耗率(硝酸銨:0.75 g/L)48
表4.4 35℃不調控pH之批次發酵培養Bacillus megaterium YU-1之生質量、PHB產率及葡萄糖消耗速率54
表4.5 26℃ pH5.5之批次發酵槽培養Bacillus megaterium YU-1之生質量、PHB產率及葡萄糖消耗速率63
表4.6 30℃ pH5.5之批次發酵槽培養Bacillus megaterium YU-1之生質量、PHB產率及葡萄糖消耗速率67
表4.7 35℃ pH5.5之批次發酵槽培養Bacillus megaterium YU-1之生質量、PHB產率及葡萄糖消耗速率72
表4.8 不同溫度下分別在不調控pH與pH 5.5之批次發酵培養Bacillus megaterium YU-1之比較79
表4.9 不同溫度下分別在不調控pH與pH 5.5之批次發酵培養Bacillus megaterium YU-1之代謝酸比較80
1.王奕隆。1998。由Alcaligenes eutrophus生產生物可分解塑膠的能量模式。大葉大學食品工程研究所碩士論文。彰化。
2.林東恩。2002。利用活性污泥合成可生物降解塑料-聚羥基脂肪酸酯的研究。華南理工大學博士論文。中國。
3.張庭愷。1998。利用 Alcaligenes eutrophus 生產polyhrdroxy -butyric acid 之發酵與控制策略之研究。大同工學院碩士論文。台北。
4.莊露。2006。紅樹林土壤中PHAs合成菌的研究。華南熱帶農業大學博士論文。海南省。
5.許琮詠。2007。不同pH培養Bacillus megaterium生合成PHB之研究。大葉大學生物產業科技學系碩士論文。彰化。
6.黃建銘。2002。生物可分解購物袋與傳統塑膠袋之分析比較。塑膠資訊,67: 70-76。
7.詹彩鑾。2003。生物可分解材料面面觀。食品工業 9(35): 3-11。
8.廖聖茹、何明嫌、余鏵堂、汪進忠。2006。從植物來的綠色塑膠。中國工程師學會會刊 79(6): 96-108。
9.劉建宏。2004。溫度變化對Ralstonia eutropha在限氮條件下發酵生產PHB之影響。大葉大學生物產業科技學系碩士論文。彰化。
10.蘇遠志。2004。生物可分解性塑膠開發商機無限。生技時代30: 56-63。
11.蘇濤、周河治、梁靜娟。1997。微生物合成可降解塑料聚羥基鏈烷酸 (PHA)。工應微生物 3(27): 37-48。
12.Ashby, R. D., Solaiman, D. K. Y. and Foglia, T. A. 2002. The synthesis of short and medium-chain-length poly (hydroxylalkanoates) mixtures from glucose or alkanoic acid grown Pseudomonas oleovorans. J. Ind. Microbiol. Biotechnol. 28: 147-53.
13.Bucci, D. Z., Tavares, L. B. B. and Sell, I. 2005. PHB packaging for the storage of food products. Polymer Testing 24: 564-571.
14.Byrom, D. 1987. Polymer synthesis by microorganism, technology and economics. Biotech. 5: 246-250.
15.Chanpratep, S. and Kulpreecha, S. 2006. Production and Characterization of Biodegradable Terpolymer Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate-co-4-Hydroxybutyrate) by Alcaligenes sp. A-04. J. Bioscience and Bioengineering 101: 51-56.
16.Dayong, J., Jian, C. and Shiyi, L. 1999. Production of poly(hydroxylalkanoate) by a composite anaerobic acidification-fermentation system. Process Biochemistry 34: 829-833
17.Delafield, F. P., Doudoroff, M. N., Paileroni, J., Lusty, J. and Contopoulos, R. 1965. Decomposition of poly-β-hydroxybutyrate by Pseudomonads. J. Bacterial 91: 1455-1466.
18.Eggink, G., Wal, V. H., Huijberts, G. N. M. and Waard, D. P. 1993. Oleic acid as a substrate for poly-3-hydroxybutyrate formation in Alcaligenes eutrophus and Pseudomonas putida. Ind. Crop. Prod. 1: 157-63.
19.Fidler, S. and Dennis, D. 1992. Polyhydroxyalkanoate production by recombinant Escherichia coli. FEMS Microbiol Rev. 103: 231-6.
20.Fukui, T., Kichise, T., Yoshida, Y. and Doi, Y. 1997. Biosynthesis of poly(3- hydroxybutyrate-co-3-hydroxyvalerate-co- 3-hydroxy- heptanoate ) terpolymers by recombinant Alcaligenes eutrophus. Biotechnol. Lett. 19(11): 1093-1097.
21.Hahn, S. K., Chang, Y. K. and Lee, S. Y. 1995. Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl. Environ. Microbiol. 61: 34-9.
22.Kahar, P., Tsuge, T., Taguchi, K. and Doi, Y. 2004. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polymer Degradation and Stability. 83: 79-86.
23.Khanna, S. and Srivastava, A. K. 2005. Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochemistry 40: 2173-2182.
24.Kim, B. S., Kim, S. C., Lee, S. Y., Chang, H. N., Chan, Y. K. and Woo, S. I. 1994. Production of poly(3-hydroxybutyric acid) by fed batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol. Bioeng. 43: 892-898.
25.Kim, B. S., Lee, S.Y. and Chang, H. N. 1992. Production of poly-beta-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol. Lett. 14: 811-6.
26.Lee, S. Y. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14.
27.Lemoigne, M. 1926. Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull. Soc. Chem. Biol. 8: 770-782.
28.Mona, K. G., Swellam, A. E. and Omar, S. H. 2001. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res. 156: 201-207.
29.Omar, S., Rayes, A., Eqaab, A., Vob, I. and Steinbuchel, A. 2001. Optimization of cell growth and poly(hydroxybutyrate) accumulation on date syrup by a Bacillus megaterium strain. Biotechnology Letter. 23: 1119-1123.
30.Pflug, S., Richter, S. M. and Urlacher, V. B. 2007. Development of a fed-batch process for the production of the cytochrome P450 monooxygenase CYP102A1 from Bacillus megaterium in E. coli. Journal of Biotechnology 129: 481-488.
31.Preusting, H., Hazenberg, W. and Witholt, B. 1993. Continuous production of poly(3-hydroxyalkanoates) by P. oleovorans in a high cell density, two-liquid- phase chemostat. Enzyme Microb. Technol. 15: 311-316.
32.Quillaguaman, J., Degado, O., Mattiasson, B. and Rajni, H. K. 2006. Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1. Enzyme Microb. Technol. 38: 148-154.
33.Shang, L., Yim, C. Y., Park, H. G. and Chang, H. N. 2004. Sequential feeding of glucose and valerate in a fed-batch culture of Ralstonia eutropha for production of poly(hydroxybutyrate-co- hydroxyvalerate) with high 3-hydroxyvalerate fraction. Biotechnol. Prog. 20: 140-144.
34.Taguchi, S., Nakamura, H., Kichise, T., Tsuge, T., Yamato, I. and Doi, Y. 2003. Production of polyhydroxyalkanoate (PHA) from renewable carbon sources in recombinant Ralstonia eutropha using mutants of original PHA synthase. Biochemical Engineering Journal 16: 107-113.
35.Tajima K., Igari, T., Nishimura, D., Nakamura, M., Satoh, Y. and Munekata, M. 2002. Isolation and charavterization of Bacillus sp. INT005 accumulation polyhydroxyalkanoate (PHA) from gas field soil. Journal of Bioscience and Bioengineering 1: 77-81.
36.Volova, T., Shishatskaya, E., Sevastianov, V., Efremov, S. and Mogilnaya, O. 2003. Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem. Eng. J. 16: 125-133.
37.Wang, W., Sun, J., Hollmann, R., Zeng, A. P. and Deckwer, W. D. 2006. Proteomic characterization of transient expression and secretion of a stress-related metalloprotease in high cell density culture of Bacillus megaterium. Journal of Biotechnology 126: 313-324.
38.Yim, K. S., Lee, S. Y. and Chang, H. N. 1996. Synthesis of poly-(3-hydroxybutyrate-co-hydroxybutyrate) by recombinant Escherichia coli. Biotechnol. and Bioeng. 49: 495-503.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔