跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 10:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張文澤
研究生(外文):WEN-TSE CHANG
論文名稱:矽鍺材料應用於光檢測器之研究
論文名稱(外文):The Study of Silicon Germanium Material on Photodetectors
指導教授:黃俊達黃俊達引用關係
指導教授(外文):JUN-DAR HWANG
學位類別:博士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:68
中文關鍵詞:矽鍺異質結構光檢測器近紅外光
外文關鍵詞:silicon germaniumheterostructurephotodetectornear infrared
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於應變矽鍺材料具有較矽塊材高的電子與電洞遷移率,從0.8微米至1.8微米近紅外光可調變的波長檢測範圍,以及易與現有矽製程技術整合等優勢,為著矽基光子元件成為下一代晶片技術的需求,而被廣泛的研究。這些年來,許多種以矽鍺為基礎的光電元件被提出作為研究的對象。
在我們的研究中,我們只要在矽鍺薄膜上覆蓋厚度60奈米的非晶矽,便可得到具有波長濾波特性的光檢測器。相較於對稱式結構,我們使用鎳、金、鉻等金屬製作非對稱式金屬-半導體-金屬的矽鍺-矽異質接面光檢測器,能有效地抑制暗電流,而保有相同的光電流。
更進一步地,我們觀察透明的銦錫氧化物與具矽覆蓋層和不具矽覆蓋層的矽鍺薄膜的歐姆接觸特性,在攝氏600度退火後,其特徵接觸電阻值分別為2.78x10-2 Ω-cm2和2.26x10-5 Ω-cm2。接著,我們應用銦錫氧化物與矽鍺薄膜的接觸特性,以銦錫氧化物與矽鍺的金屬-半導體-金屬結構,製成一個由電壓控制的双波長近紅外光檢測器。
The requirements of Silicon-based photonic devices in the next generation of chip technologies have caused extensive studied on SiGe devices due to the strained SiGe material exhibits several advantages, such as high electron and hole mobility than those in bulk Si, modulating detection wavelength from 0.8 to 1.8 μm for near-infrared optical detection, and easily integrated with the existing Silicon technology. In the past years, various types of SiGe-based optoelectronic devices have been proposed.
In our researches, we demonstrated a wavelength filter of photodetector which was simply carried out by just inserting a 60 nm thick a-Si:H capped layer onto Si0.8Ge0.2 thin film. Then, we employed Ni, Au, and Cr metals on an asymmetry metal-semiconductor-metal (MSM) structure in SiGe/Si heterojunction photodetector, it was successfully achieved to suppress the dark current of conventional symmetry MSM structure, but the photocurrent are about the same for all symmetry and asymmetry structures.
Furthermore, we investigated transparent ohmic contacts of indium tin oxide (ITO) to p-type Si0.8Ge0.2 layer with and without a Si-capping layer. It is shown that the ITO/p-type Si0.8Ge0.2 contact structure exhibits a specific contact resistance of 2.26x10-5 Ω-cm2 as compared to that of 2.78x10-2 Ω-cm2 for the ITO/Si/p-type Si0.8Ge0.2 contact structure after annealed at 600 ℃. Applying the contact character of ITO and SiGe, a voltage-control dual-band near-infrared photodetectors was achieved by using a MSM (ITO/p-Si/p-Si0.8Ge0.2/ITO) structure.
Cover Page
Signature Page
Letter of Authority (Chinese).....................................iii
Abstract (English).................................................iv
Abstract (Chinese)..................................................v
Acknowledgments (Chinese)..........................................vi
Table of Contents.................................................vii
List of Figures....................................................ix
List of Tables.....................................................xi

Chapter 1 Introduction..............................................1
Chapter 2 Thin Films Preparations
2.1 Cleaning process................................................4
2.2 Deposition of Si0.8Ge0.2 thin films.............................4
2.3 Deposition of a-Si:H capping layer on Si0.8Ge0.2................5
2.4 Deposition of Si capping layer on Si0.8Ge0.2....................5
2.5 Metal electrodes................................................5
2.6 Deposition of ITO transparent electrodes........................6
Chapter 3 Low Cost Wavelength Filter of SiGe Photodetector with a-Si:H Capped Layer
3.1 Research Motivation............................................10
3.2 Experiments....................................................10
3.3 Results and Discussion.........................................11
3.4 Summary........................................................12
Chapter 4 Suppressing the Dark Current of Metal-Semiconductor-Metal SiGe/Si Heterojunction Photodetector by Using Asymmetric Structure
4.1 Research Motivation............................................18
4.2 Theoretical Simulation.........................................19
4.3 Experiments....................................................21
4.4 Results and Discussion.........................................21
4.5 Summary........................................................22
Chapter 5 Nonalloyed Transparent Ohmic Contact of Indium Tin Oxide to P-Type Si0.8Ge0.2
5.1 Research Motivation............................................33
5.2 Experiments....................................................33
5.3 Results and Discussion.........................................34
5.4 Summary........................................................36
Chapter 6 Voltage-Control Near-Infrared Dual-Band Photodetector with Metal-Semiconductor-Metal Structures
6.1 Research Motivation............................................42
6.2 Experiments....................................................43
6.3 Results and Discussion.........................................43
6.4 Summary........................................................45
Chapter 7 Conclusions and Prospects
7.1 Conclusions....................................................49
7.2 Suggestions of Further Study...................................50
References.........................................................52
Bibliography.......................................................56
[1] M. Glickman, Phys. Rev. 100 (1955) 1146.
[2] E. Kasper, H. J. Herzog and H. Kibbel, Appl. Phys. 8 (1975) 199.
[3] J. Weber, and M. I. Alonso, Phys. Rev. B 40 (1960) 5683.
[4] R. People, J. C. Bean, D. V. Lang, A .M. Sergent, H .L. Störmer, K. W. Wecht, R. T. Lynch, and K. Baldwin, Appl. Phys. Lett. 45 (1984) 1231.
[5] E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, and A. R. Kortan, Mater. Res. Soc. Symp. Proc. 220 (1991) 211.
[6] Y. S. Chieh, J. P. Krusius, D. Green, and M. Öztürk, IEEE Electron Devices Lett. 17 (1996) 360.
[7] J. Lee, A. L. Gutierrez-Aitken, S. H. Li, and P. Bhattacharya, IEEE Trans. Electron Devices 43 (1996) 977.
[8] W. T. Hsieh, Y. K. Fang, W. J. Lee, K. H. Wu, J. J. Ho, K. H. Chen, and S. Y. Huang, IEEE Trans. Electron Devices 47 (2000) 939.
[9] T. L. Lin, J. S. Park, S. D. Gunapala, E. W. Jones, and H. M. Del Castillo, IEEE Electron Devices Lett. 15 (1994) 103.
[10] J. W. Matthews, and A. E. Blakeslee, J. Crystal Growth 27 (1974) 118.
[11] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, J. Vac. Sci. Technol. A 2 (1984) 436.
[12] H. Z. Wu, J. Y. Huang, Z. Z. Ye, X. B. Jiang, X. Shou, and D. L. Que, J. Crystal Growth 191 (1998) 72.
[13] L. H. Laih, W. C. Tsay, Y. A. Chen, T. S. Jen, R. H. Yuang, and J. H. Hong, Electronics Lett. 31 (1995) 2123.
[14] M. Herrscher, M. Grundmann, E. Dröge, St. Kollakowski, E. H. Böttcher, and D. Bimberg, Electron. Lett. 31 (1995) 1383.
[15] H. Lafontaine, N. L. Rowell, S. Janz, and D. X. Xu, J. Appl. Phys. 86 (1999) 1287.
[16] B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, Appl. Phys. Lett. 73 (1998) 3504.
[17] C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, and X. Ren, IEEE Photonics Technol. Lett. 12 (2000) 1373.
[18] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, Appl. Phys. Lett. 82 (2003) 2913.
[19] H. S. Fresser, F. E. Prins, and D. P. Kern, J. Vac. Sci. Technol. B 13 (1995) 2553.
[20] W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, Appl. Phys. Lett. 69 (1996) 3578.
[21] C. O. Chui, A. K. Okyay, and K. C. Saraswat, IEEE Photonics Technol. Lett. 15 (2003) 1585.
[22] S. M. Sze, D. J. Coleman, Jr., and A. Loya, Solid-State Electron. 14 (1971) 1209.
[23] H. S. Fresser, F. E. Prins, and D. P. Kern, J. Vac. Sci. Technol. B 13 (1995) 2553.
[24] H. K. Liou , and E. S. Yang, Appl. Phys. Lett. 63 (1993) 911.
[25] J. Kojima, S. Zaima, H. Shinoda, H. Iwano, H. Ikeda, and Y. Yasuda, Appl. Surf. Sci. 117/118 (1997) 317.
[26] V. Buschmann, M. Rodewald, and H. Fuess, J. Appl. Phys. 85 (1999) 2119.
[27] H. Kanaya, F. Hasegawa, E. Yamaka, T. Moriyama, and M. Nakajima, Jpn. J. Appl. Phys. 28 (1989) L544.
[28] R. L. Jiang, J. L. Lin, J. Li, Y. Shi, Y. D. Zheng, Appl. Phys. Lett. 68 (1996) 1123.
[29] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, IEEE Photo. Tech. Lett. 13 (2001) 848.
[30] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, IEEE Electron Device Lett. 24 (2003) 212.
[31] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai, and G. C. Chi, IEEE Electron Device Lett. 25 (2004) 593.
[32] J. D. Hwang, G. H. Yang, W. T. Chang, C. C. Lin, R. W. Chuang, and S. J. Chang, Microelectronic Engineering 77 (2005) 71.
[33] A. Daami, A. Zerrai, J. J. Marchand, J. Poortmans, and G. Brémond, Materials Science in Semiconductor Processing 4 (2001) 331.
[34] H. W. Jang, C. M. Jeon, J. K. Kim, and J. L. Lee, Appl. Phys. Lett. 78 (2001) 2015.
[35] H. W. Jang, J. Kyu, and J. L. Lee, Appl. Phys. Lett. 82 (2003) 580.
[36] J. J. Goubet, D. Stievenard, D. Mathiot, and M. Zazoui, Phys. Rev. B 46 (1992) 10113.
[37] P. Kringhøj, and A. N. Larsen, Phys. Rev. B 52 (1995) 16333.
[38] D. Sueva, S. S. Georgiev, N. Nedev, A. Toneva, and N. Chikov, Vacuum 58 (2000) 308.
[39] J. S. Rieh, D. Klotzkin, O. Qasaimeh, L. H. Lu, K. Yang, L. P. B. Katehi, P. Bhattachaya, and E. T. Croke, IEEE Photon. Technol. Lett. 10 (1998) 415.
[40] H. Zimmermann and T. Heide, IEEE Photon. Technol. Lett. 13 (2001) 711.
[41] X. Xiao, J. C. Sturm, S. R. Parihar, S. A. Lyon, D. Meyerhofer, S. Palfrey, and F. V. Shallcross, IEEE Electron Device Lett. 14 (1993) 199.
[42] A. Vonsovici, L. Vescan, R. Apetz, A. Koster, and K. Schmidt, IEEE Trans. Electron Devices 45 (1998) 538.
[43] D. Y. Zhong, G. Y. Zhang, S. Liu, T. Sakurai, and E. G. Wang, Appl. Phys. Lett. 80 (2002) 506.
[44] Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, IEEE Electron Device Lett. 24 (2003) 643.
[45] H. C. Lee, and B. V. Zeghbroeck, IEEE Electron Device Lett. 16 (1995) 175.
[46] C. Buchai, M. Löken, T. Lipinsky, L. Kappius, and S. Mantl, J. Vac. Sci. Technol. A 18 (2000) 630
[47] G. S. Kinsey, J. C. Campbell, and A. G. Dentai, IEEE Photon. Technol. Lett. 13 (2001) 842.
[48] N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, Jr., and J. C. Campbell, Appl. Phys. Lett. 82 (2003) 2175.
[49] D. Sueva, S. S. Georgiev, N. Nedev, A. Toneva, and N. Chikov, Vacuum 58 (2000) 308.
[50] J. D. Hwang, W. T. Chang, K. H. Hseih, G. H. Yang, and C. Y. Wu, Thin Solid Films 493 (2005) 203.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top