[1]Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996;75(1):18-32.
[2]Rosenblum M, Schulman A. A review of all-ceramics restorations. J Am Dent Assoc 1997;128(3):297-307.
[3]Ironside JG, Swain MV. Ceramic in dental restorations-a review and critical issues. J Aust Ceram Soc 1998;34(2):78-91.
[4]Doremus RH. Review bioceramics. J Mater Sci 1992;27:285-297.
[5]Hansen S. Preparations for Cerec 3: where are the limits. Int J Comput Dent 2000;3:197-205.
[6]Kelly JR. Ceramics in restorative and prosthetic dentistry. Mater Sci 1997;27:443-468.
[7]Anusavice KJ. Recent developments in restorative dental ceramics. J Am Dent Assoc 1993;124:72-84.
[8]Simonsen RJ. Materials horizon. J Am Dent Assoc 1991;122:25-31.
[9]Cales B. Colored zirconia ceramics for dental applications. Bioceramics 1998;11:591-594.
[10]Giordano RA. Dental ceramic restorative systems. Compend Contin Educ Dent 1996;17(8):779-794.
[11]Doremus RH. Review Bioceramics. Mater Sci 1992;27:285-297.
[12]Christensen GJ. Why all-ceramic crowns. J Am Dent Assoc 1997;128:1453-1455.
[13]Brenner MDK. The story of dentistry. London: Kimpton publishers, 1959.p. 107.
[14]林琮欽, 陳柏志, 陳志源, 葉竹原, 鍾明哲. 最新固定假牙贗復學. 合記圖書出版社. 2005. p. 643-644.
[15]Weinstein M, Weinstein AB: Fused porcelain-to-metal teeth. U.S. Patent No. 3,052,982. Sept 11, 1962.
[16]Derek WJ. Development of dental ceramics: An historical perspective. Dent Clini North Am 1985;29 (4), p. 621-645.
[17]Combe EC, Trevor Burke FJ, Douglas WH. Dental biomaterials, Boston:Kluwer Academic Publishers, 1999.p. 476.
[18]Williams DF. Biocomatibility of Clinical implant materials. v2. CRC press Inc Boca Raton. Florida, 1981. p. 112.
[19]鐘國雄. 牙科材料學. 合記圖書出版社. 1994.p. 191.
[20]Tyszblat M. Process of preparation of a dental prosthesis by slight solid phase fritting of a metal oxide based infrastructure. US Patent No. 4772436, 1987.
[21]Seghi RR. Flexural strength of new ceramic materials. J Dent Res 1990;69:299.
[22]Wolf WD. Mechanical properties and failure analysis of alumina-glass dental composites. J Amer Ceram Soc 1996;79:1769.
[23]McLaren EA. All-ceramic alternatives to conventional metal-ceramic restorations. Compend Contin Educ Dent 1998;19:307.
[24]Sorensen JA. Core ceramic flexural strength from water storage and reduced thickness. J Dent Res 1999;78:219.
[25]Shearer B. Influence of marginal configuration and porcelain addition on the fit of In-Ceram crowns. Biomaterials 1996;17:1891.
[26]Pera P. In vitro marginal adaptation of alumina porcelain ceramic crowns. J Prosthet Dent 1994;72:585.
[27]Sulaiman F. A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns. Int J Prosthodont 1997;10:478.
[28]Wang MC, Wu NC, Hon MH. Preparation of nepheline glass-ceramics and their application as dental porcelain. Mater Chem Phys 1994;37:370-375.
[29]Radovan D, Vera D, Predrag V, Smilja M, Slobodan M. Structural characterization of pure Na-nephelines synthesized by zeolite conversion route. J Phys Chem Solids 2004;65:1623-1633.
[30]Hamzawy Esmat MA, El-Meliegy Emad M. Crystallization in the Na2O-CaO-Al2O3-SiO2-(Lif) glass compositions. Ceram Int 2007;33:227-231.
[31]Slopen JV, Hobatha MC, Verdonck P. Applications of computer modeling for the design of orthopaedic, dental and cardi ovascular biomaterials. J Eng Med 1998;212 (H6):489-500.
[32]Rosenblum MA, Schulman A. A review of all-ceramic restorations. J Am Dent Assoc. 1997;128(3), 297-307.
[33]Bayne SC, Heymann HO. CAD/CAM in dentistry:Present and future applications. Quintessence. Int 1996;27(6), 431-437.
[34]Zhang WY, Gao H, Li BY, Jiao QB. A novel route for fabrication of machinable fluoramphibole glass-ceramics, Scr Mater 2006;55, 275-278.
[35]Beall GH. in: L.L. Hench, Freiman, Editors. Advances in nucleation and crystallization in glasses. American Ceramic Society, Westerville, OH, 1971. p. 251.
[36]Chyung CK, Beall GH, Grossman DG. in: Electron microscopy and structure of materials, Proceedings of 5th international materials symposium, University of California, Berkeley, CA, 1971. p. 1167.
[37]Grossman DG. Machining a machinable glass-ceramic. Am Mach 1978;122.
[38]Beall GH. Design and Properties of Glass-Ceramics, Annual Review of Materials Science. 1992;22(8):91-119.
[39]Habelitz S, Hoeche T, Hergt R, Carl G, Russel C. Microstructural design through epitaxial growth in extruded mica glass-ceramics. Acta Materialia 1999;(47) 2831.
[40]Uno T, Kasuga T, Nakyama S, Ikushima AJ. Microstructure of Mica-Based Nanocomposite Glass-Ceramics. J Am Ceram Soc, 1993;(76) 539-541.
[41]Comeforo JE, Hatch RA, Humphrey RA, Eitel W. Synthetic mica investigation: I A hot-pressed machinable ceramic dielectric. J Am Ceram Soc 1953;36(9): 286-294.
[42]El-Meliegy Emad M. Machinable spodumene-fluorophlogopite glass ceramic. Ceram Int 2004;30:1059-1065.
[43]Uno T, Kasuga T, Nakayama S. Preparation of high-strength calcium-mica-containing machinable glass-ceramics. J Ceram Soc 1992;100(5):703-707.
[44]Meulen J, Koerten HK. Inflammatory response and degradation of three types of calcium phosphate ceramic in a non-osseous environment. J Biomed Mater Res 1994;28(12):455-463.
[45]Hoeland W, Naumann K, Vogel W. Machinable bioactive glass ceramics material. DE 3306648A, 1983.
[46]Strnad Z. in: Glass Science and Technology 8: Glass-Ceramic Materials. Elsevier, Amsterdam, 1986. p.107.
[47]Chyung GK, Beall GH, Grossman DG. in: Proceedings of 19th International Congress on Glass. Kyoto, Japan, 1974. p. 33.
[48]Holand W, Vogel W, Naumann K, Gummel J. Interface reactions between machinable bioactive glass-ceramics and bone. J Biomed Mater Res, 1985;19:303-312.
[49]Vogel W. Perspective of the development of bioactive glass ceramics for biomedical applications. J Non-Cryst Solids, 1985;73:593.
[50]Vogel W, Holand W, Naumann K, Gummel J. Development of machineable bioactive glass-ceramics for medical uses, J Non-Cryst Solids, 1986;80:34.
[51]Vogel W, Holand W. The development of bioglass ceramics for medical applications. Angew Chem Int Ed Engl, 1987;26:527.
[52]Holand W, Wange P, Naumann K, Vogel J, Carl G, Jana C, Gotz W. J Non-Cryst Solids, 1991;129:152.
[53]Holand W, Vogel W, Naumann K, Carl G, Wange P, Vogel J, Gotz W. in: P. Vincenzini editors, Ceramics in Substitutive and Reconstructive Surgery, Elsevier, Amsterdam, 1991. p. 121.
[54]Holand W, Vogel W. in: Hench LL, J. Wilson Editors. An Introduction to Bioceramics, Advanced Series in Ceramics, vol. 1, World Scientific, Singapore, 1993. p. 125.
[55]Zhang X, Chen X, Li B. Effect of Heat-Treatment and Addition on the Crystallization Features of Bioactive Glass Ceramics. J Trace Microprobe Tech 1997; 15.p. 713.
[56]Chen X, Hench LL, Greenspan D, Zhong J, Zhang X. Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramics containing fluorophlogopite and fluorapatite. Ceram Int 1998;24:401-410.
[57]Honda SN, Beall GH. in: Simmons JH, Uhlmann DR, Beall GH. editors, Advances in Nucleation and Crystallization in Glasses, American Ceramic Society, Westerville, OH, 1982. p. 287.
[58]Taruta S, Mukoyama K, Suzuki SS, Kitajima K, Takusagawa N. Crystallization process and some properties of calcium mica-apatite glass-ceramics. J Non-Cryst Solids 2001;296:201-211.
[59]Taruta S, Sakata M, Yamaguchi T, Kitajima K. Crystallization process and some properties of novel transparent machinable calcium-mica glass-ceramics, Ceram Int 2008;34:75-79.
[60]吳世經. 鈣磷生醫玻璃之結晶及其性質研究. 國立成功大學材料科學及工程研究所博士論文. 1995.[61]張柳春, 郭行健. 材料科學與工程. 學銘圖書有限公司,歐亞書局有限公司. 2005.p. 464-465.
[62]R.C. Mackenzie. Nomenclature in thermal analysis, part IV. Thermochim Acta 1979;28:1.
[63]R. C. Mackenzie. The origin of thermal analysis. Isr J Chem 1982;22:203-205.
[64]陳道達. 熱分析. 渤海堂文化事業有限公司. 1992.p. 251.
[65]柯以侃, 吳明珠. 儀器分析. 文京圖書有限公司. 1996.p. 564-585.
[66]邱念華. 儀器分析實驗. 新文京開發出版股份有限公司. 2003.p. 301-305.
[67]王明光, 王敏昭. 實用儀器分析. 合記出版社. 2003. p. 222-236.
[68]Hench LL, Splinter RJ, Allen WC. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 1971;2:117-141.
[69]Liu Y, Sheng X, Dan X, Xiang Q. Preparation of mica/apatite glass-ceramics biomaterials. Mater Sci and Eng C 2006;26:1390-1394.
[70]T Kokubo, S Ito, S Sakka. Formation of a high-strength bioactive glass-ceramics in the system MgO-CaO-SiO2-P2O5. Mater Sci 1986;21(2):536-540.
[71]Beall GH. Advances in Nucleation and Crystallization in Glasses. Columbus. USA: The American Ceramic Society, 1971.
[72]Crossman DG. Machinable glass-ceramics based on tetrasilicic mica. J Am Ceram Soc 1972;55:446-449.
[73]Chen XF, Hench LL, Greenspan D, J Zhong, Zhang X. Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramics containing fluorophlogopite and fluorapatite. Ceram Int 1998;24(5):401-410.
[74]Taruta S, Watanabe K, Kitajima K, Takusagawa N. Effect of titania addition on crystallization process and some properties of calcium mica-apatite glass-ceramics. J Non-Cryst Solids 2003;321:96-102.
[75]Noda T. Synthetic mica research in Japan. J Am Ceram Soc 1955;38(4):147-152.
[76]Mustafa Emad A A. Fluorophlogopite porcelain based on talc-feldspar mixture. Ceram Int 2001;27:9-14.
[77]Marghussian VK, Mesgar A, Sheikh-Mehdi. Effects of composition on crystallization behaviour and mechanical properties of bioactive glass-ceramics in the MgO-CaO-SiO2-P2O5 system. Ceram Int 2000;26:415-420.
[78]Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B. Gel-derived materials of a CaO-P2O5-SiO2 system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res 2000;52:601-612.
[79]Laczka M, Cholewa K, Laczka-Osyczka A. Gel-derived powders of CaO-P2O5-SiO2 system as a starting material to production of bioactive ceramics. J Alloys Compd 1997;248:42-51.
[80]Yu B, Liang K, Gu S. Effect of the microstructure on the mechanical properties of CaO-P2O5-SiO2-MgO-F- glass ceramics. Ceram Int 2003;29:695-698.
[81]Dalal KH, Davis RF. Beta spodumene-mica glass-ceramics I, phase evolution and microstructure. Ceram Bull 1977;26:991-997.
[82]Radonjic L, Nikolic L. The effect of fluorine source and concentration on the crystallization of machinable glass-ceramics. J Eur Cer Soc 1991;7:11-16.
[83]Hoche T, Habelitz S, II Knodos. Origin of unusual fluorphlogopite morphology in mica glass-ceramics of the system SiO2-Al2O3-MgO-K2O-Na2O-F2. J Crystal Growth 1998;192:185-195.
[84]Cheng K, Wan J, Liang K. Differential thermal analysis on the crystallization kinetics of K2O-B2O3-MgO-Al2O3-SiO2-TiO2-F glass. J Am Ceram Soc 1999;82:1212-1216.
[85]Carl G. Crystallization behaviour and properties of a mica glass-ceramic with various additions of TiO2 and ZrO2. In: Proceedings of the XVII international congress on glass. v5. Beijing, China, 1995. p. 343-348.
[86]Eftekhari Yekta B, Hashemi Nia S, Alizadeh P. The effect of B2O3, PbO and P2O5 on the sintering and machinability of fluormica glass-ceramics. J Eur Cer Soc 2005;25:899-902.
[87]Goeuriot D, Dubois JC, Merle D, Thevenot F, Exbrayat P. Enstatite based ceramics for machinable prosthesis applications. J Eur Ceram Soc 1998;18:2045-2056.
[88]Xu HHK, Kelley RJ, Jahanmir S, Thompson V, Rekow ED. Enamel subsurface damage due to tooth preparation with diamonds. J Dent Res 1997;76(1):1698-1706.
[89]Holand W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res (Appl Biomater) 2000;53(4):297-303.
[90]Quinn J, Su L, Flanders L, Lloyd I. Edge toughness and material properties related to the machining of dental ceramics. Mach Sci Technol 2000;4:291-304.
[91]Albakry M, Guazzato M, Swain MV. Fracture toughness and hardness evaluation of three pressable all-ceramic dental materials. J Dentistry 2003;31(3):181-188.
[92]Yin L, Song XF, Song YL, Huang T, Li J. An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry. International Journal of Machine Tools & Manufacture 2006;46:1013-1026.
[93]Boccaccini AR. Machinability and brittleness of glass-ceramics. J Mater Proc Technol 1997;65:302-304.
[94]Taruta S, Ichinose T, Yamaguchi T, Kitajima K. Preparation of transparent lithium-mica glass-ceramics. J Non-Cryst Solids 2006;352:5556-5563.