(18.210.12.229) 您好!臺灣時間:2021/03/03 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游志賢
研究生(外文):Zhi-xian You
論文名稱:以NF薄膜去除水中農藥之研究:背景水質特性與薄膜種類的影響
論文名稱(外文):Removal of Pesticides by Nanofiltration:Effect of the Water Matrix and Physico-chemical Characteristics of Membranes
指導教授:柯雅雯柯雅雯引用關係
指導教授(外文):Ya-wen Ko
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:107
中文關鍵詞:NF90NF270NTRAtrazineDiuronDichiorvosIsoproturonMonocrotophosSimazinSimetryn背景離子背景水質
外文關鍵詞:NF90NF270NTRAtrazineDiuronDichiorvosIsoproturonMonocrotophosSimazinSimetrynwater matrixco-existing ions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討不同背景離子(氯化鈉、硫酸鈉)、背景水質(去離子水、自來水、地下水)和NF薄膜(NF90、NF270、NTR)對農藥(Atrazine、Diuron、Dichiorvos、Isoproturon、Monocrotophos、Simazin、Simetryn)分離成效的影響。薄膜對農藥的去除成效分別為NF90>NF270>NTR。若增加壓力,溶質通量與溶劑通量均隨之增加,其去除率則視二者通量的相對增幅而定。Diuron的分子量及分子寬度較大,空間障礙效應是影響去除率高低的主要因素;至於NTR薄膜之去除率隨農藥的logKow越大有遞增趨勢,而農藥的pKa則反之。
在背景離子存在時,薄膜結構變得更緊密,因此穩態清水通量會下降。若NaCl、Na2SO4濃度為39.5mg/L時,對Simazin、Simetryn、Dichiorvos的去除率均會增加。至於背景水質對去除率的影響,大致隨背景成分越多而越差,排序為自來水>原水。背景成分對去除率的影響不一,Atrazine和Simazin因背景成分於薄膜介面產生靜電效應使去除率增加,而Dichiorvos和Simetryn則是有顯著的空間障礙效應使去除率增加;至於Diuron、Isoproturon、Monocrotophos則隨背景成分的存在,其去除率降低。
The objective of this research is to study the effects of water matrix and different NF membranes (NF90, NF270, and NTR) on the rejection properties of the selected pesticides, including Atrazine, Diuron, Dichiorvos, Isoproturon, Monocrotophos, Simazin, and Simetryn. The influence of the physico-chemical characteristics of pesticides on the rejection rate is also investigated. Results showed that the rejection rate of pesticides was in the order of NF90> NF270> NTR. Both the solute and solvent flux will increase with the increase of applied pressure; while the rejection rate is dependent on the relative increments of both flux. Since Diuron has a greater molecular weight and molecular width, steric exclusion is one of the major rejection mechanisms. For the NTR membranes, Pesticides with a greater value of LogKow or with a lower value of pKa will exhibit a greater value of rejection rate.
When the co-existing ions exist, structure of the membrane becomes more compact, and consequently the permeate flux will decrease. The rejection rate of Simazin, Simetryn, and Dichiorvos increased when the concentration of NaCl and Na2SO4 were 39.5 mg/L. As for the effect of water matrix on the rejection rate, the rejection rate of pesticide decreased with the increase of background composition. Rejection rate of Atrazine and Simazin increased due to the electrostatic repulsion on the membrane surface. On the other hand, rejection rate of Dichiorvos and Simetryn increased because of the significant steric exclusion. As for Diuron, Isoproturon, and Monocrotophos, their rejection rates decreased with the existence of background components.
封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xiii
符號說明 xiv

第一章 前言 1
1.1研究緣起 1
1.2研究目的與內容 2
第二章 文獻回顧 3
2.1 NF薄膜的基本性質與分離原理 3
2.1.1薄膜的種類與材質結構 3
2.1.2常見的操作參數 5
2.1.3 NF薄膜的分離傳輸機制 7
2.2 NF薄膜對溶質的去除效果 9
2.2.1無機離子 10
2.2.2有機物 13
2.2.3天然原水 18
2.3影響NF薄膜去除農藥的因素 21
2.3.1薄膜的物化特性 21
2.3.2農藥的物化特性 25
2.3.3操作條件 29
2.3.4背景水質的特性 31
第三章 實驗材料與研究方法 34
3.1研究流程 34
3.2實驗設備與材料 34
3.2.1實驗裝置 34
3.2.2所使用的薄膜種類 39
3.2.3進流液的選擇 39
3.3 NF薄膜的預備試驗 41
3.3.1基線水通量(Baseline flux) 41
3.3.2薄膜吸附 42
3.4試驗步驟 42
3.5分析方法 45
3.5.1導電度(Conductivity) 45
3.5.2離子分析 45
3.5.3農藥的分析-分光光度計及液相層析儀 47
第四章 結果與討論 49
4.1 薄膜基本特性的分析結果 49
4.1.1 NF薄膜物化特性分析 49
4.1.2 穩態基線水通量 52
4.1.3 農藥對薄膜的吸附性 54
4.2 以不同NF薄膜處理單一農藥水溶液的結果 56
4.2.1薄膜種類對薄膜去除農藥的影響 56
4.2.2操作壓力對薄膜去除農藥的影響 59
4.2.3進流濃度對去除率的影響 63
4.3農藥特性對薄膜去除農藥的影響 68
4.3.1分子大小 70
4.3.2農藥之疏水性 72
4.3.3農藥帶電性 74
4.3.4比較結構相似的農藥 75
4.4 水質特性對薄膜處理的影響 77
4.4.1背景無機離子對農藥去除的探討 77
4.4.2自來水與原水水質對農藥去除的探討 82
第五章 結論與建議
5.1 結論 88
5.2 建議 89
參考文獻 90
・王志仁,「薄膜處理技術去除天然有機物之研究」,碩士論文國立,台北科技大學環境規劃與管理研究所,台北,民國91年8月。
・李鑫瑋 ,祝萬鵬,朱安娜,「酚類分子結構和纳濾膜特性對截留率的影響規律」,環境化學,24(4),2005。
・吳健昌,「操作條件與進流水質對NF薄膜去除農藥的影響」,碩士論文,大葉大學環境工程學系,彰化,民國94年6月。
・林樹慶,「以NF薄膜去除水中有機物:進流濃度與背景離無機離子的影響」,碩士論文,大葉大學環境工程學系,彰化,民國93年6月。
・林詠暉,「操作條件與背景離子對NF薄膜去除環境荷爾蒙的影響」,碩士論文,大葉大學環境工程學系,彰化,民國95年6月。
・陳柔閔,「無機離子於NF薄膜之傳輸與分離成效的研究」,碩士論文,大葉大學環境工程學系,彰化,民國92年8月。
・葉宣顯,「澄清湖高級淨水處理模型廠試驗研究」(第一年),台灣省自來水公司專案計畫,成功大學環境工程學系,民國88年8月。
・Ahn, K. H., Song, K. G., Cha, H. Y. and Yeom, I. T., “Removal of ions in nickel electroplating rinse water using low-pressure nanofiltration”, Desalination, Vol.122, pp.77-84, 1999.
・Ahmad, A.L., Tan, L.S. and Shukor, S.R. Abd., “The role of pH in nanofiltration of atrazine and dimethoate from aqueous solution”, Journal of Hazardous Materials, Available online 27, 2007.
・Ahmad, A. L., Tan, L. S. and Shukor, S.R., “Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes”, Journal of Hazardous Materials, Vol. 151, pp. 71-77, 2008.
・Ahmad, A. L., Tan, L. S. and Shukor S. R., “The role of pH in nanofiltration of atrazine and dimethoate from aqueous solution”, Journal of Hazardous Materials, Vol. 154, pp. 633-638, 2008.
・Anselme, C., Mandra, V., Baudin, I., Jacangelo, J. C. and Mallevialle, J., “Optimum use of membrane processes in drinking water treatment”, paper presented at the 19th International Water Association Congress, Budapest, Hungary, 1993.
・Amy, E. C. and Elimelech, M., ”Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes”, Journal of Membrane Science, Vol.199, pp.253-268, 1999.
・Amoudi, A., Williams, P. Hobaib, A. S. and Lovitt, R. W., “Cleaning results of new and fouled nanofiltration membrane characterized by contact angle, updated DSPM, flux and salts rejection”, Applied Surface Science, Vol. 254, pp3983-3992, 2008.
・AWWA Membrane Technology Research Committee, “Committee report:membrane processes”, Journal of American Water Works Association, 1998.
・Bellona, C., Drewes, J. E., Xu, P. and Amy, G., “Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review”, Water Research, Vol.38, pp.2795-2809, 2004.
・Bellona, C. and Drewes, J. E., “The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes”, Journal of Membrane Science, Vol.249, pp.227-234, 2005.
・Berg, P. and Gimbel, P., “Rejecttion of trace organics by nanofiltration”, In Proc. AWWA Membrane Technology Conference, New Orleans, LA, 1997.
・Berg, P., Hagmeyer, G. and Gimbel, R., “Removal of pesticides and other micropollutants by nanofiltration”, Desalination, Vol.113, pp.205-208, 1997.
・Blu, T. J., Tylor, J. S., Morris, K. E. and Mulford, L. A., “DBP control by nanofiltration,cost and performance”, Journal of Amercian Water Works Assocation, Vol.84, pp.104-116, 1992.
・Boussahel, R., Bouland, S., Moussaoui, K. M. and Montiel, A., “Removal of pesticide residues in water using the nanofiltration process”, Desalination, Vol.132, pp.205-209, 2000.
・Boussahel, R., Montiel, A. and Baudu, M., “Effects of organic and inorganic matter on pesticide rejection by nanofiltration”, Desalination, Vol.145, pp.109-114, 2002.
・Bodzek, M., Dudziak, M. and Luks-Betlej, K., “Application of membrane techniques to water purification removal of phthalates”, Desalination, Vol.162, pp.121-128, 2004.
・Bouchoux, A., Balmann, H. R. and Lutin, F., “Nanofiltration of glucose and sodium lactate solutions Variations of retention between single- and mixed-solute solutions”, Journal of Membrane Science, Vol.258, pp.123–132, 2005.
・Chian, E. S. K., Bruce, W, N. and Fang, H. H. P., “Removal of pesticide by reverse osmosis ”, Journal of Environmental Science and Technology, Vol.9, pp.52-59, 1975.
・Childress, A. E. and Elimelech, M., “Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes”, Journal of Membrane Science, Vol.119, pp.253-268, 1996.
・Chellam, S., Jacangelo, J. G., Bonacquisti T. P. and Schaner, B. A., “Effect of pretreatment on surface water nanofiltration”, Journal of Amercian Water Works Assocation, Vol.89, pp.77-89, 1997.
・Chellam, S. and Taylor, J. S., “Simplied analysis of contaminant rejection during ground and surface water nanofiltration under the information collection rule”, Water Research, Vol.35, pp.2460-2474, 2001.
・Chen, S. and Tayol J. S., “Flat sheet testing for pesticide removal by varying RO/NF membrane”, In Proc. AWWA Membrane Technology Conference, New Orleans, LA, 1997.
・Choi. J., Fukushi K. and Yamamoto K., “A study on the removal of organic acids from wastewaters using nanofiltration membranes” Separation and Purification Technology, 2007.
・Conlon, W. J. and McClellan, S. A., “Membrane softening:a treatment process comes of age”, Journal of American Water Works Association, Vol.81, pp.47-51, 1989.
・Costa, A. R. and Pinho, M. N., “Performance and cost estimation of nanofiltration for surface water treatment in drinking water production”, Desalination, Vol.196, pp.55-65, 2006.
・Dard, S., Cote, P., Seberac, P. and Ortiz, R. S., “Drinking water production from hight sulfate mine water by nanofiltration”, In Proceeding AWWA Membrane Technology Conference, Reno, Nevada, 1995.
・Devitt, E. C., Ducellier, F., Cote, P. and Wiesner, M. R., “Effects of natural organic matter and the raw water matrix on the rejection of atrazine by pressure driven membranes”, Water Research, Vol.32, pp.2563-2568, 1998.
・Dey, T. K., Ramachandhran, V. and Misra, B. M., “Selectivity of anionic species in binary mixed electrolyte systems for nanofiltration membranes”, Desalination, Vol.127, pp.165-175, 2000.
・Duranceau, S. J., Taylor, J. S. and Mulford, L. A., “SOC removal in a membrane softening process”, Journal of American Water Works Association, Vol.84, pp.68-78, 1992.
・Edwards, E., “THM control using mrmbrane technology”, proceeding, Joint FS/AWWA, FPCA, and FW&PCOA, Fort Lauderdale, 1988.
・Ernst, M., Bismarck, A., Springer, J. and Jekel, M., “Zeta-potential and rejection rates of a polyethersulfone nanofiltration membrane in single salt solutions”, Journal of Membrane Science, Vol.165, pp.251–259, 2000.
・Freger, V., Arnot, T. C. and Howell, J. A., “Separation of concentrated organic/inorganic salt mixtures by nanofiltration”, Journal of Membrane Science, Vol.178, pp.185-193, 2000.
・Gaid, A., Bablon, G., Turner, G. and Franchet, J., “Performance of 3 years operation of nanofiltration plants”, Desalination, Vol.117 pp.149-158, 1998.
・Garba, Y., Taha, S., Gondrexon, N., Cabon, J. and Dorange, G., “Mechanisms involved in cadmium salts transport through a nanofiltration membrane:characterization and distribution”, Journal of Membrane Science, Vol.168, pp.135-141, 2000.
・Garcia-Aleman, J. and Dickson, J. M., “Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membranes: membrane charge inversion phenomena”, Journal of Membrane Science, Vol.239, pp.163–172, 2004.
・Hagmeyer, G. and Gimbel, R., “Modelling the rejection of nanofiltration membranes using zeta potential measurements”, Separation and Purification Technology, Vol.15, pp.19-30, 1999.
・Hofman, J. A. M., Noij, T. N. M., and Schrippers, J. C., “Removal of pesticides and other organic micropollutants with membrane filtration”, Water Supply, Vol.11, pp. 101-111, 1993.
・Hong, S. and Elimlech, M., “Chemical and physical aspects of natural matter (NOM)fouling of nanofiltration membrane”, Journal of Membrane Science, Vol.132, pp. 159-181. 1997.
・Hu, J. Y., Ong, S. L., Shan, J. H., Kang, J. B. and Ng, W. J., “Treatability of organic fractions derived from secondary effluent by reverse osmosis membrane”, Water Research, Vol.37, pp.4801-4809, 2003.
・Kimura, K., Amy, G., Drewes, D. and Watanade, Y., “Adsorption of hydrophobic compounds onto NF/RO membranes:an artifact lesding to overestimation of rejection”, Journal of Membrane Science, Vol.221, pp.89-101, 2003.
・Kiso, Y., “Factors affecting adsorption of organic solute on cellulose acetate in an aqueous solution system”, Chromatographia, Vol.22, pp.55-60, 1986.
・Kiso, Y., Kitao, T., Kiyokatsu, j. and Miyagi, M., “The effects of molecular width on permeation of organic solute through cellulose acetate reverse osmosis membrane” Journal of Membrane Science, Vol.74, pp.95-103, 1992.
・Kiso, Y., Nishimura, Y., Kitao, T. and Nishimura, K., “Rejection properties of non-phenylic pesticides with nanofiltration membranes”, Journal of Membrane Science, Vol.171, pp.229-237, 2000.
・Kiso, Y., Kon, T., Kitao, T. and Nishimura, K., “Rejection properties of alkyl phthalates with nanofiltration membranes”, Journal of Membrane Science, Vol.182, pp.205-214, 2001.
・Kiso, Y., Mizuno, A., Othman, R. A. A., Jung, Y. J., Kumano, A. and Ariji, A., “Rejection properties with a hollow fiber NF membrane (HNF-1)”, Desalination, Vol.143, pp.147-157, 2002.
・Kosutic, K., Kastelan-Kunst, L. and Kunst, B., “Porosity of some commercial reverse osmosis and nanofiltration polyamide thin-film composite membranes”, Separation andPurification Technology, Vol.168, pp.101-108, 2000.
・Kosutic, K. and Kunst, B., “Removal of organics from aqueous solutions by commercial RO and NF membranes of characterized porosities”, Desalination, Vol.142, pp. 47-56, 2002.
・Kosutic, K., Novak, I., Sipos, L. and Kunst, B., “Removal of sulfates and other inorganics from potable water by nanofiltration membranes of characterized porosity”, Separation and Purification Technology, Vol.37, pp.177-185, 2004.
・Koyuncu, I. and Topacik, D., “Effect of organic ion on the separation of salts by nanofiltration membranes”, Journal of Membrane Science, Vol.195, pp.247-263, 2002.
・Koyuncu, I., “Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes:Effects of feed concentration and cross flow velocity”, Desalination, Vol.143, pp.243-253, 2002.
・Krieg, H. M., Modise, S. J., Keizer, K. and Neomagus, H. W. J. P., “Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal”, Desalination, Vol.171, pp.205-215, 2004.
・Ku, T., Lee, P. L. and Wang, W. T., “Removal of acidic dyestuffs in aqueous solution by nanofiltration”, Journal of Membrane Science, Vol.250, pp.159-165, 2005.
・Kunst, B., Arneri, G. and Vajnaht, Z., “On the comparision of Reverse osmosis membrane performance”, Journal of general physiology, Vol. 45 PP.143-179. 1961.
・Lee, S., Kim J. and Lee, C., “Analysis of CaSO4 scale formation mechanism in various nanofiltration modules”, Journal of Membrane Science, Vol.163 pp.63–74, 1999.
・Lee, S. and Lee, C., “Effect of membrane properties and pretreatment on flux and NOM rejection in surface water nanofiltration”, Separation and Purification Technology, Vol.56, pp.1-8, 2007.
・Levenstein, R., Hasson, D. and Semiat, R., “Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes”, Journal of Membrane Science, Vol.116, pp.77-92, 1996.
・Manttari, M., Pekuri, T. and Nystrom, M., “NF270, a new membrane having promising characteristics and being suitable for treatment of dilute effluents from the paper industry”, Journal of Membrane Science, Vol.242, pp.107-116, 2004.
・Manttari, M. and Nystrom, M., “Negative retention of organic compounds in nanofiltration “, Desalination, Vol.199,pp.41-42 2006.
・Mattias, N., Trägårdh, G.. and Östergren K.,” The influence of pH, salt and temperature on nanofiltration performance”, Journal of Membrane Science, Vol. 312, pp.97-106, 2008.
・Matsuura, T., Pageau, L. and Sourirajan, S., “Reverse osmosis separation of inorganic solutes in aqueous solutions using porous cellulose acetate membranes”, Journal of Applied Polymer Science, Vol.19, pp.179-198, 1975.
・Mazzoni, C. and Bandini, S., “On nanofiltration Desal-5 DK performances with calcium chloride-water solutions”, Separation and Purification Technology, Vol.52 pp.232–240, 2006.
・Mehiguene, K., Gerba, Y., Taha, S., Gondrexon, N. and Dorange, G., “Influence of operating conditions on the retention of copper and cadmium in aqueous solutions by nanofiltration:experimental results and modeling”, Separation and Purification Technology, Vol.15, pp.181-187, 1999.
・Mukherjee, P., Kimberly, L. J. and Joshua, O. A., ”Surface modification of nanofiltration membranes by ion implantation”, Journal of Membrane Science, Vol.254, pp.303-310, 2005.
・Nghiem, L. D., Schafer, A. I. and Waite, T. D., “Adsorption of estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment”, Water Science Technology, Vol.46, pp.265-72, 2002.
・Nghiem, L. D., Manis, A., Soldenhoff, K. and Schafer, A. I., “Estrogenic hormone removal from wastewater using NF/RO membranes”, Journal of Membrane Science, Vol.242, pp.37-45, 2004.
・Ozaki, H., Sharma, K. and Saktaywin, W., “Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters”, Desalination, Vol.144, pp.287-294, 2002.
・Ozaki, H. and Li, H., “Rejection of organic compounds by ultra-low pressure reverse osmosis membrane”, Water Research, Vol.36, pp.123-130, 2002.
・Ratanatamskul, C., Urase, T. and Yamamoto, K., “Description of behavior in rejection of pollutants in ultra low pressure nanofiltration”, Water Science and Technology, Vol.38, pp.453-462, 1998.
・Peeters, J. M. M., Boom, J. P., Mulder, M. H. V. and Strathmann, H., “Retention measurements of nanofiltration membranes with electrolyte solutions”, Journal of Membrane Science, Vol.145 pp.199–209, 1998.
・Plakas, K. V., Karabelas, A. J., Wintgens, T. and Melin, T., “A study of selected herbicides retention by nanofiltration membranes-The role of organic fouling”, Journal of Membrame Science, Vol.284, pp.291-300, 2006.
・Plakas, K. V. and Karabelas, A. J.,” Membrane retention of herbicides from single and multi-solute media:The effect of ionic environment”, Journal of Membrane Science, Vol. 320 pp.325–334, 2008.
・Pontalier, P. Y., Ismail, A. and Ghoul, M., “Mechanisms for the selective rejection of solutes in nanofiltration membranes”, Separation and Purification Technology, Vol.12, pp.175-181, 1997.
・Schaep, J., Bruggen, B. V., Uytterhoeven, S. and Croux, R., “Removal of hardness from groundwater by nanofiltration”, Desalination, Vol.119, pp.295-302, 1998.
・Schafer, A. I., Nghiem, L. D. and Waite, T. D., “Removal of the natural hormone estrone from aqueous solution using Nanofiltration and Reverse Osmosis”, Environ. Sci. Technol, Vol.37, pp.182-188, 2002.
・Schutte, C. F., “The rejection of specific organic compounds by reverse osmosis membranes”, Desalination, Vol.158, pp.285-294, 2003.
・Siddiqui, M., Amy, G., Ryan, J. and Odem, W., “Membranes for the control of natural organic matter from surface wares”, Water Research, Vol.34, pp.3355-3370, 2000.
・Sjöman, E., Mänttäri, M., Nyström, M., Koivikko, H. and Heikkilä, H., “Xylose recovery by nanofiltration from different hemicellulose hydrolyzate feeds”, Journal of Membrane Science, Vol. 310, pp.268-277, 2008
・Taylor, J., “Applying membrane processes to groundwater sources for trihalomethane precursor control”, Journal of American Water Works Association, Vol.79, pp.72, 1987.
・Tan, L. and Sudak, R. G., “Removing color from a groundwater source”, Journal of American Water Works Association, Vol.84, pp.79-87, 1992.
・Tang, C. and Chen, V., “Nanofiltration of textile wastewater for water reuse”, Desalination, Vol.143, pp.11-20, 2002.
・Thanuttamavong, M., Yamammuto, K., Oh, J. L. and Choo, K. H., “Rejection characteristics of organic and inorganic pollutants by ultralow-pressure nanofiltration of surface water for drinking water treatment”, Desalination, Vol.113, pp.257-264, 2002.
・Tanninen, J., Manttari, M. and Nystrom, M., “Effect of electrolyte strength on acid separation with NF membranes”, Journal of Membrane Science, Vol.294, pp.207–212, 2007.
・Teng, M. Y., “The rejection of organic compound with adsorbent by nanofiltration from diluted solutions”, presented at the 4th Conference on Membrane Science Technology in Taiwan, Taiwan, May 14, 2004.
・Teixeira, M. R., Rosa, M. J. and Nystrom, M., “The role of membrane charge on nanofiltration performance”, Journal of Membrane Science, Vol.265, pp.160–166, 2005.
・Teixeira, M. R. and Rosa, M. J., “The impact of the water backgound inorganic matrix on the natural organic matter removal by nanofiltration”, Journal of Membrane Science, Vol.279, pp.513-520, 2006.
・Van der Bruggen, B., Everaert K., Wilms, D. and Vandecasteele C., “Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation” Journal of Membrane Science, Vol.193, pp.235-248, 2001.
・Vrijenhoek, E. M. and Waypa, J. J., “Arsenic removal from drinking water by a “loose” nanofiltrayion membrane”, Desalination, Vol.130, pp. 265-277, 2000.
・Vrijenhoek, E. M., Hong, S. and Elimelech, M., “Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes”, Journal of Membrane Science, Vol.180, pp.115-128, 2001.
・Verliefde, A., Cornelissen, E., Amy G., Bruggen, B. V. and Dijk, H., “Priority organic micropollutants in water sources in Flanders and the Netherlands and assessment of removal possibilities with nanofiltration” Environmental Pollution, Vol.146, pp.281-289, 2007.
・Verliefde, A. R. D., Cornelissen, E. R., Heijman, S. G.J., Verberk, J. Q. J. C., Amy, G.L., Van der Bruggen, B. and van Dijk, J. C. “The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration”, Journal of Membrane Science, Available online 21 May 2008
・Verliefde, A. R. D., Cornelissen, E. R., Heijman, S., Verberk, C., Amy, G., Van der Bruggen, B, and Dijk, J., “The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration”, Journal of Membrane Science, In Press, Corrected Proof, Available online 21 May 2008.
Wang, X. L., Wang, W. N. and Wang, D. X., “Experimental investigation on separation performance of nanofiltration membranes for inorganic electrote solutions”, Desalination, Vol.145, pp.115-122, 2002.
・Wang, X. L., Wang, W. N. and Meng, SU., “Separation performance of nanofiltration membranes for chlorides, nitrates and sulfates aqueous solutions”, The 4th Membrane Conference in Taiwan Chungli, 2004.
・Wang, D., Su. M., Yu Z., Wang X., Ando, M. and Shintani, T., “Separation performance of a nanofiltration membrane influenced by species and concentration of ions”, Desalination, Vol.175, pp.219-225, 2005.
・Waypa, J. J., Elimelech, M. and Hering, J. G., “Arsenic removal by RO and NF membranes”, Journal of Amercian Water Works Assocation, Vol.89, pp.102-114, 1997.
・Xu, Y. and Lebrum, R., “Comparison of nanofiltration properties of two membranes using electrolyte and non-eletrolyte solutes”, Desalination, Vol.122, pp.95-106, 1999.
・Yang, M. H., Yen, H. Y. and Hsu, Y. T., “A study of applied model analysis for separation if NaCl solution in reverse osmosis membrane”, presented at the 4th Conference on Membrane Science Technology in Taiwan, Taiwan, May 14, 2004.
・Yoon, Y., Amy, G., Cho, J., Her, N. and Pellegrino, J., “Transport of perchlorate (ClO4-) through NF and UF membranes”, Desalination, Vol.147, pp.11-17, 2002.
・Zhang, Y., Van der Bruggen, B., Chen, G. X., Braeken, L. and Vandecasteele, C., “Removal of pesticides by nanofiltration: effect of the water matrix”, Separation and Purification Technology, Vol.38, pp.163-172, 2004.
・Zhang, Y., Causserand, C., Aimar, P. and Cravedi, J. P., “Removel of bisphenol A by a nanofiltration membrane in view of drinking water production”, Water Research, Vol.40, pp.3793-3799, 2006.
・Zhao., Y., Tayor, J. and Hong, S., “Combine influence of membrane surface properties and feed water qualities on RO/NF mass transfer, a pilot study”, Water Research, Vol.39, pp.1233-1244, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔