跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/14 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳光燦
研究生(外文):Kuang-Tsan Chen
論文名稱:希爾伯特黃轉換基於信號重建對結構系統的危險評估以及經濟診斷
論文名稱(外文):Hilbert-Huang Transform Based Signal Reconstruction for the Hazard Evaluation of Structural Systems and the Diagnosis of Economy
指導教授:林正紋林正紋引用關係
指導教授(外文):Cheng-wen Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:土木工程所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:53
中文關鍵詞:危險評估經濟模型正交係數信號濾波希爾伯特黃轉換
外文關鍵詞:Signal FilteringOrthogonalization CoefficientEconomy ModelHazard EvaluationHilbert-Huang Transform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
源自於模型的不確定性與量測的不確定性,本研究提出一個希爾伯特黃轉換的信號過濾技術,透過振動測量數據作為結構系統的危險評估並且為公眾的福祉用於現代經濟之診斷。
希爾伯特黃轉換技術是一套高階的演算法對於分析非線性和非穩態信號。然而信號被濾出後,靠著從”被選擇的”內建模態函數進行重建,這一些導源於以經驗模態分解原始信號。這先進的過濾技術提供了準則,經使用內積概念或正交係數來選擇內建模態函數。藉由信號濾波方法,它是可能增加精確性對於時間變化系統的自然頻率估算-顯示結構損害度-其協助有效管理結構物修繕或替換;同樣地,致力於精確的經濟模型提升,這部分為經濟診斷提出合適的函數在於反覆識別系統上,經由希爾伯特黃轉換提升雜訊過濾的論點來診斷國民平均生產毛額趨向。
Springing from the model uncertainties and uncertainty of measurement, this paper presents a Hilbert-Huang transform based signal filtering technology for the hazard evaluation of structural systems via vibration measurements and the diagnosis of modern economy for public welfare.
The Hilbert-Huang transformation technology is a set of superior algorithms for analyzing non-linear and non-stationary signals. However, the signals are filtered by reconstruction from “selected” intrinsic mode functions (IMFs), which are derived from the original signal through the empirical mode decomposition (EMD) method. The developed filtering technique offers the criterion for selecting the IMFs using the inner dot concept or the orthogonalization coefficient. Through the signal filtering, it is possible to increase the accuracy for the evaluation of the time-varying system’s natural frequency—indicative of the degree of structural damage—which assists an effective management of structural repair or replacement; Similarly, aiming for accurate economy model updating, this part presents the adaptive function based repetitive identification system for economy diagnosis, through the proposition of an enhanced noise filtering of Hilbert-Huang transform (HHT) to diagnose the GDP per capita trend.
中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII

第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究範圍 3
第二章 文獻回顧 4
2.1 前言 4
2.2 傅立葉轉換 4
2.3 希爾伯特-黃轉換 8
2.3.1 瞬時頻率 8
2.3.2 內建模態函數 10
2.4 經驗模態分解法 13
2.5 完整性與正交性 18
2.6 希爾伯特頻譜 20
第三章 應用於結構系統的危險評估 22
3.1 非線性信號處理 22
3.2 內建模態函數分析 22
3.3 透過信號重建自然頻率的實驗和評估 23
3.4 小結 24
第四章 應用於現代經濟之診斷 26
4.1 前言 26
4.2 經濟的短期趨勢 27
4.3 小結 28
第五章 結論 29
參考文獻 30
1.Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis,” Procedures of the Royal Society of London, Vol. 454, pp. 903-995 (1998).

2.Huang, N.E., Wu, M.C., Long, S.R., Shen, S.P., Qu, W., Gloersen, P., Fan, K.L., “A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis,” Procedures of the Royal Society of London, Vol. 459, pp. 2317-2345 (2003).

3.Koh, C.G. and See L.M., “Identification and Uncertainty Estimation of Structural Parameters,” Journal of Engineering Mechanics, Vol. 120, No. 6, (1994), pp 1219-1236.

4.Lin, J. W., “Adaptive Algorithms for the Identification of Nonlinear Structural Systems,” Ph.D. Dissertation, 166 pp., Columbia University: New York, USA (2001).

5.Longman, R. W., “Iterative Learning Control and Repetitive Control for Engineering Practice,” International Journal of Control, Special Issue on Iterative Learning Control (2000).

6.Lin, J.W., Huang, C.W., Chen, K.T., “Health Monitoring of Nonlinear Structural Systems under Earthquake-Induced Ground Excitations,” The 8th National Conference on Structural Engineering, Sun Moon Lake, Taiwan(2006).

7.Lin, J.W., Chen, H. J., Chen, K. T., Lee, B. J., “Hilbert-Huang Transform Based Signal Reconstruction for the Hazard Evaluation of Structural Systems, ” 2nd International Conference on Urban Disaster Reduction,(2007).

8.Lin, J.W., Huang, C.W., Chen, K.T., “Hilbert-Huang Transform with Enhanced Noise Filtering for the Diagnosis of Modern Economy, ”Computer Applications in Civil and Hydraulic Engineering, Taipei(2007).

9.Lin, J.W., Chen H.J. and Tsai C.S., “Application of the Hilbert-Huang Transform and Enhanced Noise Filtering to the Damage Detection of Structural Systems,” Proceedings of ASME Pressure Vessels and Piping Division Conference, San Antonio, Texas, PVP2007-26135, (2007).

10.Stry, G.I. and Mook, D.J., “Correlation Techniques in Robust Nonlinear System Realization / Identification,” Advances in the Astronautical Sciences Proceedings of the AAS/AIAA Spaceflight Mechanics Meetings, Vol. 75, Part 1, pp. 453-469 (1991)

11.Yang, J.N., Lei, Y., Lin, S., Huang, N., “Hilbert-Huang Based Approach for Structural Damage Detection,” Journal of Engineering Mechanics, Vol. 130, No. 1, (2004), pp 85-95.

12.吳政憲,“希爾伯特阻尼頻譜於高樓損傷評估之應用”,國立中央大學土木工程研究所碩士論文,2000.

13.李有豐, 張順益, 曾文青, 黃鋼“HHT應用於矩形RC 橋柱擬動態實驗之研究”,中華民國第六屆結構工程學術研討會,第26-28頁,2002.

14.李建德,“橋梁振動訊號淨化之研究”,中原大學土木工程學系碩士論文,2005.

15.Titchmarsh, E. C. 1948 Introduction to the theory of Fourier integrals. Oxford University Press.
16.Newland, D.E., “An introduction to Random Vibrations, Spectral and Wavelet Analysis,” John Wiley & Sons, Inc., New York. (1993).

17.Copson, E. T, "Asymptotic Expansions" Cambridge University Press, Cambridge., 1967.

18.Whitham, G. B"Linear and Nonlinear waves." John Wiley, New York, NY., 1975.

19.Dazin, P. G., "Nonlinear Systems", Cambridge University Press, Cambridge., 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top