跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 03:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉發綺
研究生(外文):Fa-Chi Liou
論文名稱:光學干涉法於微小位移之量測
論文名稱(外文):Measurement of Small Displacements by Optical Interferometric Method
指導教授:鄭經華陳坤煌陳坤煌引用關係
指導教授(外文):Ching-Hwa ChengKun-Huang Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:資訊電機工程碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:80
中文關鍵詞:旋光外差干涉術微小位移量測內反射偏振角
外文關鍵詞:circularly polarized heterodyne interferometrysmall displacement measurementinternal reflection polarization angle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
精確的微小位移量測對於各式各樣的應用,包括微機電系統,精密工業檢測與振動感測來說是一項重要的工作。而目前的發展皆以如何能夠快速測量,且同時具有高精確性、非破壞性、非接觸性等特性為主要的需求。在本研究中,基於內反射偏振現象與旋光外差干涉術,提出一種簡單的方法來測量微小位移。當一旋光外差光源經由一面鏡反射,並入射到一半球稜鏡之底面,反射光再經由一檢偏板後形成干涉。當稜鏡底面入射角設定為內反射偏振角,同時檢偏板的方位角作一適當選擇,此時s-偏光和p-偏光之間的相位差與稜鏡底面入射角之間有著非常靈敏的關係,而此相位差正可由外差干涉術精確的測得。因此當面鏡引入一位移量時,此時將造成稜鏡底面入射角與相位差的改變,將此相位差的變化代入到所特別推導的方程式中,即可求得微小的位移量。這個方法已在-5~+5mm的位移量上證明其可行性,且量測的解析度約為0.091um。此方法具有非破壞性、非接觸式、操作簡單、量測快速、穩定度高與靈敏度高等優點。
Accurately measuring small displacements is an important task that has several applications, including micro-mechanical electronic systems, accurate industrial testing and vibration sensing. Non-destructive, non-contact and real-time methods are strongly desired for accurately measuring small displacements. This study proposes a simple method for measuring small displacements, based on the properties of polarization by internal reflection and using circularly polarized heterodyne interferometry. A circularly polarized heterodyne light beam, reflected from a mirror, is incident into a hemispherical prism and is reflected at the base of the prism. The reflected light beam then passes through an analyzer for interference. With properly chosen azimuth angles of the transmission axis of the analyzer, the phase difference between s- and p- polarized light is sensitive to the incident angle when it is equal to the internal reflection polarization angle. The phase difference can be accurately measured using heterodyne interferometry. The small displacement of the mirror causes a small variation of the incident angle and a phase change. Therefore, substituting the phase difference into especially derived equations yields the small displacement. The validity of this method is shown experimentally with -5 ~ +5mm, and the displacement measurement resolution is about 0.091um. The proposed method has the advantages of being non-destructive, being non-contact, involving a common-path configuration, simplicity of structure, ease of operation, rapid measurement, high stability and high sensitivity.
誌 謝 i
摘 要 iii
Abstract iv
目 錄 vi
圖目錄 ix
表目錄 xi
縮寫與符號對照表 xii
第一章 緒論 1
1.1 前言 1
第二章 微小位移量測的應用與文獻回顧 4
2.1 前言 4
2.2 非光學式量測系統 4
2.2.1 接觸式測量 5
2.2.2 非接觸式測量 6
2.3 光學式量測系統 8
2.3.1 非干涉式量測法 9
2.3.2 干涉式量測法 11
2.4 小結 21
第三章 旋光外差干涉術 23
3.1 前言 23
3.2 外差干涉術的基本原理 24
3.3 旋光外差光源的形成 25
3.4 使用電光晶體調制外差光源 27
3.5 外差干涉儀的基本架構 31
3.6 外差干涉術之誤差分析 33
3.6.1 偏振旋轉誤差 34
3.6.2 偏振混合誤差 36
3.7 內反射偏振現象之原理 37
3.8 小結 41
第四章 微小位移測量技術的原理及實驗結果 42
4.1 前言 42
4.2 微小位移測量技術的原理及實驗結果 42
4.2.1 位移量與半球稜鏡底面入射角之關係 42
4.2.2 以旋光外差干涉術測量半球稜鏡底面入射角的變化 45
4.3 實驗與結果 49
4.4 討論 51
4.5 小結 57
第五章 結論與未來展望 58
5.1 結論 58
5.2 未來展望 59
參考文獻 60
[1].D. J. Park, G. J. Park, T. S. Aum, J. H. Yi, and J. H. Kwon, “Measurement of displacement and vibration by using the oblique ray method,” Appl. Opt, Vol.45, No.16, 3728-3732 (2006).
[2].F. P. Quintian, A. Lutenberg, and M. A. Rebollo, “Linear displacement measurement with a grating and speckle pattern illumination,” Appl. Opt, Vol.45, No.20, 4821-4825 (2006).
[3].G. A. Slettemoen, “Electronic Speckle Pattern Interferometric Systems Based on a Speckle Reference Beam,” Appl. Opt, 19(4), 616-623 (1980).
[4].K. M. Lee and A. A. Polycapou, “Dynamic microwaviness measurements of super smooth disk media used in magnetic hard disk drives,” in Fifth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE 4827, 493–503 (2002).
[5].S. J. Rothberg and J. Bell, “Guide to translational and rotational vibration measurements on rotors using laser vibrometry,” in Fourth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE 4072, 210–221 (2000).
[6].B. Bhduri, N. K. Mohan, M. P. Kothiyal, “A dual-function ESPI system for the measurement of out-of-plane displacement and slope,” Optics and Lasers in Engineering, 44, 637-644 (2006).
[7].C. M. Wu, “Periodic nonlinearity resulting from ghost reflections in heterodyne interferometry,” Optics Communications, 215, 17-13 (2003).
[8].M. S. Kim, S. W. Kim, “Two-long-mode He-Ne laser for heterodyne interferometers to measure displacement,” Appl. Opt, Vol.41, No.28, 5938-5942 (2002).
[9].張之禮, “雙單模光纖干涉儀用於微小位移量測之研究,” 國立中央大學光電所碩士論文, (2003)。
[10].J. Y. Lee and D. C. Su, ’’A method for measuring Brewster''s angle by circularly polarized heterodyne interferometry,” J. Opt. 29,349-353 (1998).
[11].J.D. Smith, “Vibration Measurement and Analysis,” Butterworths, (1989).
[12].A. S. Morris, “Measurement and Instrumentation Principles,” Butterworth and Heinemann, (2001).
[13].莊永全, “渦電流位移感測器之設計與多自由度位移系統之特性研究,” 國立臺灣大學機械工程研究所碩士論文, (2001)。
[14].KEYENCE CORPORATION, “High-Accuracy, Non-Contact Laser Displacement Meter Selection Guide,” (2002).
[15].D. J. Park, G. J. Park, T. S. Aum, J. H. Yi, and J. H. Kwon, “Measurement of displacement and vibration by using the oblique ray method,” Appl. Opt. 45, 3728-3732 (2006).
[16].F. Perez-Quintián, A. Lutenberg, and M. A. Rebollo, “Linear displacement measurement with a grating and speckle pattern illumination,” Appl. Opt. 45, 4821-4825 (2006).
[17].蔡耀慶, “次微米面內位移之雷射干涉儀開發及發展,” 長庚大學機械工程研究所碩士論文, (1999).
[18].陳席卿編著,「雷射原理與光電檢測」, 全華圖書, (1991)。
[19].D. B. Bogy and F. E. Talke, “Dynamic Response of A Winchester-Tpe Slider Measured by Laser Doppler Interferometry,” IEEE Trans. Magn., 20, 5, pp.927~929 (1984).
[20].D. B. Bogy and F. E. Talke, “Laser Doppler Inteferometry on Magnetic Recording Systems,” IEEE Trans. Magns., 21, 5, pp.1332~1337, (1985).
[21].吳錦源、李世光著, ”創新雷射都卜勒振動/干涉儀之研製,” 國立台灣大學應用力學研究所博士論文, (1998)。
[22].J. N. Butters and J. A. Leendertz, ”Holographic and Video Techniques Applied to Engineering Measurement,” Journal of Measurement and Control, 4, pp.349-354, (1971).
[23].S. R. Guntaka, V. Toal, and S. Martin, “Holographically recorded photopolymer diffractive optical element for holographic and electronic speckle-pattern interferometry,” Appl. Opt. 41, 7475–7479 (2002).
[24].A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, “Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera,” Appl. Opt. 38, 1159–1162 (1999).
[25].張之禮, “雙單模光纖干涉儀用於微小位移量測之研究,” 國立中央大學光電所碩士論文, (2003)。
[26].M. Dobosz, “Application of a focused laser beam in a grating interferometer for high-resolution displacement measurements,” Opt. Eng. 38, 6, 958-967, (1999).
[27].Shurong He, Zongyang Xiao, and Zhuang He, “Grating displacement sensor: instead of the Moire fringes, the grating line are subdivided directly by CCD,” Proc. of SPIE 4221, 406-409, (2000).
[28].藍啟峰, “以FPGA發展電子細分割及其於光柵干涉儀的應用,” 國立台灣大學機械工程研究所碩士論文, (2001).
[29].C. Chou, Y. C. Huang, and M. Chang, “Precise optical activity measurement of quartz plate by using a true phase-sensitive technique,” Appl. Opt. 36, 3604-3609, (1997).
[30].C. M. Feng, Y. C. Huang, J. G. Chang, M. Chang, and C.Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Comm. 141, 314-321, (1997).
[31].T. Y. Wang, S. X. Zheng, and Z. G. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer,” Sensors Actuators Phys. 69, 134-138, (1998).
[32].S. Hosoe, “Highly precise and stable laser displacement measurement interferometer with differential optical passes in practical use,” Nanotechnology 4, 2, 81-85, (1993).
[33].G. E. Sommargren, “A new laser measurement system for precision metrology,” Precision Engineering 9, 179-181, (1987).
[34].P. Hariharan, “Basics of Interferometry,” Academic Press, Boston, (1992).
[35].M. H. Chiu, and D. C. Su, “Angle measurement using total-internal-reflection heterodyne interferometry,” Opt. Eng. 36, 1750–1753, (1997).
[36].J. Y. Lee, and D. C. Su, “Common-path heterodyne interferometric detection scheme for measuring wavelength shift,” Opt. Commun. 162, 7–10, (1999).
[37].K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209, 167–172, (2002).
[38].J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter,” Meas. Sci. Technol. 14, 55–58, (2003).
[39].C. Chou, J. C. Shyu, Y. C. Huang and C. K. Yuan, “Common-path optical heterodyne profilometry: a configuration,” Appl. Opt. 37, 4137–4142, (1998).
[40].W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt. 9, 649–652, (1970).
[41].G. L. Coté, M. D. Fox and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39, 752–756, (1992).
[42].M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Opt. Lett. 9, 319–321, (1984).
[43].C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng and J. C. Shyu, “Noninvasive glucose monitoring in vivo with optical heterodyne polarimeter,” Appl. Opt., 37, 3553–3557, (1998).
[44].E. Gelmini, U. Minomi and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” Opt. Lett. 19, 213–215, (1994).
[45].J. C. Kemp, “Piezo-optical birefringence modulators : new use for a long known effect,” J. Opt. Sci. Am. 59, 950–954, (1969).
[46].C. Chou, Y. C. Huang, C. M. Feng and M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys., 36, 356–359, (1997).
[47].J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter,” Meas. Sci. Technol., 14, 55–58, (2003).
[48].A. Yariv and P. Yeh, “Optical waves in crystsal,” John Wiley & Sons, Inc., Chap. 5, 121–154, (1984).
[49].蘇德欽, 國科會專題研究計畫成果報告『外差干涉術用的新型移頻器』, 計畫編號:NSC-82-0417-E009-346, (1994).
[50].J. M. De Freitas and M. A. Player, “Importance of rotational beam alignment in the generation of second harmonic errors in laser heterodyne interferometry,” Meas. Sci. Technol., 4, 1173-1176, (1993).
[51].C. M. Wu and R. D. Deslattes, “Analytical modeling of the periodic nonlinearity in heterodyne interferometry,” Appl. Opt. 37, 6696-6700, (1998).
[52].W. Hou and G. Wilkening, “Investigation and compensation of the nonlinearity of heterodyne interferometers,” Prec. Eng. 14, 91-98, (1992).
[53].A. E. Rosenbluth and N. Bobroff, “Optical sources of nonlinearity in heterodyne interferometers,” Prec. Eng. 12, 7-11, (1990).
[54].P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann and P. Steinrucke, ”Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B. 54, 166-175, (1999).
[55].J. Y. Lee and D. C. Su, “A Method for Measuring Brewster’s Angle by Circularly Polarized Heterodyne Interferometry,” J. Opt. 29, 349-353 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top