跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許文嘉
研究生(外文):Wen-Chia Hsu
論文名稱:一維硫化銦的製備與特性分析
論文名稱(外文):The Synthesis and Characteristization of One-Dimensional Indium Sulfide
指導教授:施仁斌
指導教授(外文):Jen-Bin Shi
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:44
中文關鍵詞:硫化銦
外文關鍵詞:Indium Sulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以陽極處理的方式將高純度的鋁模板製備成多孔性氧化鋁模板,在成長的過程中需謹慎的控制電解液的濃度、溫度與酸鹼度,並精確的供應電壓電流及工作時間,以製作出均一孔徑並具規律性陣列線徑的多孔性氧化鋁模板。
利用電化學沉積法在多孔性氧化鋁模板內填充銦奈米線,之後將電鍍銦奈米線的氧化鋁模板和硫片封入真空玻璃管,並放進高溫爐加熱至500℃持溫10小時形成硫化銦奈米線。
實驗的過程中利用FESEM觀察氧化鋁模板及硫化銦奈米線的形貌,EDS確認硫化銦奈米線元素的定性分析及成分比例,XRD定義出硫化銦奈米線結構型態,最後利用UV量測硫化銦奈米線吸收光譜的變化。
In order to fabricate the nanoporous anodic aluminum oxide (AAO) from the high purity aluminum by anodization process, to carefully control the electrolyte of concentration, temperature and pH value, and precisely support the voltage current and work time, the nanoporous anodic aluminum was formed with uniform porous and regularly ordered nanochannel.
To fill the indium element into the nanochannel of anodic aluminum by electrochemical deposition method, then put the anodic aluminum oxide and Sulfide powder in the glass tube. The glass tube was evacuated by using a pump, and it was placed into the furnace and heated from temperature to 500℃ for 10 hours.
To observed the sample appearance by FESEM instrument in experimental process. The element condition was determined by EDS, and demonstrated the structure of indium sulfide nanowires by X-ray diffraction, to measure the absorbance spectrum by UV machine.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
第一章 緒論 1
1.1 奈米材料概念[1] 1
1.1.1零維奈米材料[2] 1
1.1.2一維奈米材料 2
1.1.3二維奈米材料 2
1.2 半導體奈米材料的特殊性質[1] 3
1.2.1 表面效應: 3
1.2.2 體積效應: 3
1.2.3 量子尺寸效應: 4
1.3 研究目的及動機 5
第二章 文獻回顧 6
2.1 硫化銦(Indium Sulfide) 6
2.1.1 硫化銦結構與特性 6
2.2 多孔性結構之氧化鋁模板 6
2.2.1 氧化鋁奈米多孔模板的結構特徵 7
2.2.2 氧化鋁奈米多孔模板的成長機制 8
2.2.3 增加氧化鋁模板孔洞的陣列規則性 16
2.2.4 氧化鋁奈米多孔模板的製備變因 21
2.2.5 氧化鋁奈米多孔模板製備一維奈米結構材料 25
2.3氧化鋁模板成長奈米線的製備方式 25
第三章 實驗方法 31
第四章、結果與討論 32
第五章 結論 33
[1]劉吉平、郝向陽編著,林鴻明審校,“奈米科學與技術”,2003年12月。
[2]馬遠榮,“低維奈米材料”,科學發展,382期,2004年10月。
[3]S. Gorai, P. Guha, D. Ganguli, S. Chaudhuri, “Chemical synthesis of β-In2S3 powder and its optical characterization”, Materials Chemistry and Physics. 82, 974–979, 2003.
[4]C.D. Lokhande, A. Ennaooui, P.S. Patil, M. Giersig, K. Diesner, M. Muller and H. Tributsch. “Chemical bath deposition of indium sulphide thin films: preparation and characterization”, Thin Solid Films. 340, 18, 1999.
[5]W. Chen, J.O. Bovin, A.G. Joly, S. Wang, F. Su, G. Li, J. “Full-Color Emission from In2S3 and In2S3:Eu3+ Nanoparticles”, Phys. Chem. B108, 11927, 2004.
[6]K. Hara, K. Sayama, H. Arakawa, “Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes”, Sol. Energy Mater. Sol. Cell 62, 441, 2000.
[7]Nasser P., Stephan W. K., Andre M., “Introduction to semiconductor optics”, Prentice-Hall, New Jersey, 112, 1993.
[8]Hideki Masuda, Kenji Fukuda, “Ordered Metal Nanohole Arrays by A Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science. 268, 1466-1468, 1995.
[9]Li, A. P., F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina”, J. Appl. Phys. 84, 6023, 1998.
[10]P.M. Paulus, F. Luis, M. Kroll, G. Schmid, L.J. de Jongh, “Low-Temperature Study of The Magnetization Reversal and Magnetic Anisotropy of Fe, Ni, and Co Nanowires”, Journal of Magnetism and Magnetic Materials. 224, 180-196, 2001.
[11]Y.C. Sui, B.Z. Cui, L. Martez, R. Perez, D.J. Sellmyer, “Pore Structure, Barrier Layer Topography and Matrix Alumina Structure of Porous Anodic Alumina Film”, Thin Solid Films. 406, 64-69, 2002.
[12]G.E. Thompson, “Porous anodic alumina: fabrication, characterization and applications”, Thin solid films. 297, 192 (1997).
[13]O. Jessensky, F. Muller, U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, Appl. Phys. Lett. 72, 1173, 1998.
[14]Thamida, Sunil Kumar and Hsueh-Chia Chang, “Nanoscale pore formation dynamics during aluminum anodization”, Chaos. 12, 240, 2002.
[15]陳柏林,“奈米碳管與氧化鈦奈米點之陽極氧化鋁模板輔助成長與電子場效發射”,國立交通大學博士論文,(2005)。
[16]Valand, T. and K. E. Heussler, J. “Reactions at the oxide-electrolyte interfaces of anodic oxide films on aluminum”, Electroanal. Chem. 149, 71, 1983.
[17]Parkhutik, V. P. and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminum”, J. Phys. D 25, 1258, 1992.
[18]Parkhutik, V. P. and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminum”, J. Phys. D 25, 1258, 1992.
[19]Takeshi Ohgai, Xavier Hoffer, Laurent Gravier, Jean-Eric Wegrowe and Jean-Philippe Anesrmet, “Spin-Valves and Multilayers in Self-Organized Anodized Aluminum Nanopores”, Institute of Physics Publishing. 14, 978-982, 2003.
[20]Masuda, Hideki, Haruki Yamada, Masahiro Satoh, Hidetaka Asoh, Masashi Nakao,and Toshiaki Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina”, Appl. Phys. Lett. 71, 2770, 1997.
[21]Masuda, Hideki, Hidetaka Asoh, Mitsuo Watanabe, Kazuyuki Nishio, Masashi Nakao, and Toshiaki Tamamura, “Square and triangular nanohole array architectures in anodic alumina”, Adv. Mater. 13, 189, 2001.
[22]Liu, N. W., A. Datta, C. Y. Liu, and Y. L. Wang, “High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays”, Appl. Phys. Lett. 82, 1281, 2003.
[23]Masuda, Hideki and Kenji Fukuda, “Ordered metal nanohole arrays by a two-step replication of honeycomb structures of anodic alumina”, Science. 268, 1466, 1995.
[24]Masuda, Hideki and Masahiro Satoh, Jpn. J. “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask”, Appl. Phys. 35, L126, 1996.
[25]A. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu, “Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition”, Applied Physics Letters. 79(7), 1039-1041, 2001.
[26]Zhibo Zhang, Jackie Y. Ying, Mildred S. Dresselhaus, “Bismuth Quantum-Wire Arrays Fabricated by A Vacuum Melting and Pressure Injection Process”, Journal of Materials Research. 13(7), 1745-1748, 1998.
[27]Joan Redwing, Theresa Mayer, Suzanne Mohney and Ari Mizel, “Building Blocks for Nanoscale Electronics”, NSF Nanoscale Science and Engineering Grantees Conference. Dec 11-13, 2002.
[28]王元聰,“氧化鋁模板輔助氧化鋅奈米陣列成長特性”,國立成功大學博士論文,2004年。
[29]PHILIPS,Philips Research Materials Analysis. X-ray Diffraction (XRD).
[30]Xuebo Cao, Li Gu, Lanjian Zhuge, Wenhu Qian, Cui Zhao, Xianmei Lan, Wenjun Sheng , Dan Yao “Template-free preparation and characterization of hollow indium sulfide nanospheres”, ScienceDirect. 297, 183-190, 2007.
[31]E. Mooser, W. B. Pearson, “In Progress in Semiconductors”, Ed. A. F. Gibson.John Wiley & Sons: New York, Vol. 5, p53, 1960.
[32]W.T. Kim, C.D. Kim, “Optical energy gaps of β-In2S3 thin films grown by spray pyrolysis”, J. Appl. Phys. 60, 2631, 1986.
[33]逢甲大學共同貴重儀器中心(PISC)FESEM-EDS說明會資料圖。
[34]Xuebo Cao, Li Gu, Lanjian Zhuge, Wenhu Qian, Cui Zhao, Xianmei Lan, Wenjun Sheng, Dan Yao, “Template-free preparation and characterization of hollow indium sulfide nanospheres”, Colloids and Surfaces A: Physicochem. Eng. Aspects 297, 183–190, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top