跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 16:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:秦振傑
研究生(外文):Jhen-Jie Cin
論文名稱:微小化CCS枝幹耦合器之研製
論文名稱(外文):Miniaturized 90° Hybrid Coupler Using Complementary-Conducting-Strip (CCS) Transmission Line
指導教授:陳志強陳志強引用關係
指導教授(外文):Chih-Chiang Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:83
中文關鍵詞:枝幹耦合器互補傳導線帶
外文關鍵詞:CCS(complementary-conducting-strip)90° hybrid coupler
相關次數:
  • 被引用被引用:0
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究將針對微波被動電路中枝幹耦合器的縮裝方法進行探討與研究,擬運用一種新型合成波導傳輸線結構–互補傳導線帶傳輸線(complementary-conducting-strip transmission line, CCS TL)及台積電TSMC CMOS 0.18μm 1P6M RF製程來設計及製作CCS枝幹耦合器(branch-line coupler, 90° hybrid) 單晶微波積體電路(Monolithic Microwave Integrated Circuit, MMIC),並藉由製作量測及三維(3–D)電磁全波分析(EM Full-Wave)–有限元素法(Finite Element Method)等手法來探討、比較傳統一維(1–D)微帶(Microstrip, MS)傳輸線與二維(2–D) CCS傳輸線的導波特性(guiding properties),並分別設計相關微波被動電路,來評估比較CCS傳輸線電路與傳統環形微帶線電路之設計縮裝面積與電路電氣效能。依相關研究結果顯示:設計之CCS微型化枝幹耦合器,其佔用面積為570 μm × 600 μm,僅是相同製程條件下設計之傳統環形MS枝幹耦合器佔用面積的3%;且此種新型枝幹耦合器在10.5–12.5 GHz頻段範圍內,該電路展現出輸入反射損耗 (|S11|) ≧ 10.5 dB, 耦合損耗 (|S21|及|S31|)分別為6.0 ± 0.5 dB及7.2 ± 0.3 dB, 隔離度 (|S41|) ≧ 16.0 dB, 輸出埠之相位差(|∠S31−∠S21|)為90° ± 5°等不錯地性能。
本論文亦提出CCS單元細胞等效元件模型串接合成電路之模擬方法,與上述3–D電磁全波模擬方法比較,顯示分析之S參數頻率響應的結果吻合,所提方法可大大降低3–D電磁全波模擬對全電路之設計分析所需時間,在一次失效條件下約降低了32倍的時間。
This dissertation proposed method for miniaturizing 90° hybrid coupler of a microwave circuit. It uses a novel synthetic transmission lines (TLs) called complementary-conducting-strip TL (CCS TL) and 0.18μm 1P6M CMOS foundry technology to design and make 90° hybrid coupler for MMIC. Theoretical analysis is conducted using a three-dimensional (3-D) full-wave EM simulator Ansoft HFSSTM, to elucidate the guiding characteristics of the CCS TL, the traditional MS TL and the performance of 90° hybrid coupler. The CCS 90° hybrid coupler occupied an area of only 570 μm × 600 μm, which according to the analysis, is only 3% of the area occupied by a conventional MS 90° hybrid coupler. In the frequency band of 10.5−12.5 GHz the return loss (|S11|) ≧ 10.5 dB, and the coupler losses (|S21| and |S31|) are 6 ± 0.5 dB and 7.2 ± 0.3 dB, respectively. Isolation (|S41|) ≧ 16 dB, phase difference (|∠S31−∠S21|) = 90° ± 5° Hence, the performance is good.
This dissertation proposed Equivalent-circuit model simulation, compares with the full-wave EM simulation, demonstrated that S-parameter very closely, that method greatly reduces the time required to perform a full-wave EM simulation of the complete circuit design, losing efficiency for the first time can reduce the time of 32 times.
摘 要 i
Abstract iii
誌 謝 v
目 錄 vi
圖目錄 ix
表目錄 xiii
論文縮寫及符號對照表 xiv
第一章 緒 論 1
1.1 研究背景及動機 1
1.2 研究目的及方法 4
1.3 本文架構 5
第二章 微型化CCS枝幹耦合器之研製 6
2.1 枝幹耦合器設計原理 6
2.2 CCS 互補傳導線帶傳輸線 9
2.2.1 CCS 波導結構 9
2.2.2 CCS TL 13
2.3微型化CCS枝幹耦合器與傳統環形MS枝幹耦合器 16
2.3.1微型化CCS枝幹耦合器(Caes1) 16
2.3.2 微型化CCS枝幹耦合器(Caes1)模擬分析及量測驗證 23
2.3.3 傳統環形MS枝幹耦合器 27
2.3.4討論與改善研究 34
第三章 有效且快速地模擬設計方法 44
3.1簡介 44
3.2等效CCS單元細胞模型參數之萃取 44
3.3電磁全波模擬與等效CCS單元細胞參數串接合成電路比較分析 48
3.3.1 以 Case2之CCS 枝幹耦合器為例 48
3.3.2 以CCS 威爾京生功率分配器為例 53
3.4 比較分析 58
3.5 討論與小結 60
第四章 結論 61
參考文獻 63
作者簡介 66
論文發表成果列 67
[1].D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998.
[2].K. C. Gupta, Ramesh Garg, Inder Bahl, and Prakash Bhartia, Microstrip Lines and Slotlines, Artech House, Boston London, 1996.
[3].T. Hirota, A. Minakawa, and M. Muraguchi, “Reduced-size branch-line and rat-race hybrids for uniplanar MMIC''s,” IEEE Trans. Microwave Theory Tech., vol. 3, no. 10, pp.270-275, Mar. 1990.
[4].L. –H. Lu, G. E. Ponchak, P. Bhattacharya, and L. P. B. Katehi,“Design and implementation of micromachined lumped quadrature (90°) hybrids,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 2001, pp. 1285-1288.
[5].C. –W. Tang, M. –G. Chen, “Synthesizing Microstrip Branch-Line Couplers With Predetermined Compact Size and Bandwidth,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 9, pp. 1926-1934, Sep. 2007.
[6].K. Hettak, G. A. Morin, and M. G. Stubbs, “Compact MMIC CPW and Asymmetric CPS Branch-Line Couplers and Wilkinson Dividers Using Shunt and Series Stub Loading,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 5, pp. 1624-1635, May 2005.
[7].Y. Yun, “A Novel Microstrip-Line Structure Employing Periodically Perforated Ground Metal and Its Application to Highly Miniaturized and Low-Impedance Passive Components Fabricated on GaAs MMIC,” IEEE Trans. Microwave Theory Tech. vol. , 53, no. 6, pp.1951-1959, Jun. 2005.
[8].C. –S. Kim, J. –S. Park, D. Ahn, and J. –B. Lim, “A novel one-dimensional periodic defected ground structrure for planar circuits,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 131-133, Apr. 2000.
[9].F. –R. Yang, Y. Qian, R. Coccioli, and T. Itoh, “A novel low loss slow-wave microstrip structure,” IEEE Microwave Guide Wave Lett., vol. 8, pp. 372-374, Nov. 1998.
[10].F. Falcone, T. Lopetegi, and M. Sorolla, “1-D and 2-D photonic bandgap microstrip structures,” Microwave Opt. Technol. Lett., vol. 22, no. 6, pp. 411-412, Sept. 1999.
[11].I. Toyoda, T. Hirota, T. Hiraoka., T. Tokumitsu, “Multilayer MMIC Branch-line Coupler and Broad-Side Coupler,” Microwave Millimeter-Wave Monolithic Circuits Symp., Dig., 1992, pp. 79-82.
[12].K. Hettak, G. –A. Morin, M. –G. Stubbs, “A New Miniaturized Type of Three-Dimensional SiGe 90° Hybrid Coupler at 20 GHz using The Meandering TFMS and Stripline Shunt Stub Loading,” IEEE MTT-S Int. Dig., 2007, pp. 33-36.
[13].J. –G. Yang, Y. Jeong, S. –Choi, K. Yang, “A New Compact 3–D Hybrid Coupler Using Multi-Layer Microstrip Lines at 15 GHz,” in Proc. 36th Eur.Microw. Conf., Sep. 10-15, 2006, pp. 25-28.
[14].C. Y. Ng, M. Chongcheawchamnan, and I. D. Robertson, “Lumped-distributed hybrids in 3D-MMIC technology,” Proc. Inst. Elect. Eng. Microw. Antennas Propag., vol. 151, no. 4, pp. 370-374, Aug. 2004.
[15].T. Tokumitsu, T. Hiraoka, H. Nakamoto, and T. Takenaka, “Multilayer MMIC using a 3 μm × 3-layer dielectric film structure,” IEEE MTT-S Int. Microwave Symp. Dig., 1990, pp. 831–834.
[16].C. –C. Chen and C. –K. C. Tzuang, “Synthetic Quasi-TEM Meandered Transmission Lines for Compacted Microwave Integrated Circuits,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 6, pp. 302-304, Jun. 2004.
[17].H. –H Wu, H.–S Wu and C.–K C. Tzuang, “Synthesized high-impedance CMOS Thin-Film transmission line,” 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems Dig., pp. 302-304, Sep. 8~10, 2004 Atlanta.
[18].C. –K. C. Tzuang, C. –H. Chang, H. –S. Wu, S. Wang, S. –X. Lee, C.-C. Chen, C.-Y. Hsu, K.-H. Tsai, and J. Chen, “An X-band CMOS multifunction- chip FMCW radar,” IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 2011–2014
[19].M. –J. Chiang, H. –S. Wu, and C. –K. C. Tzuang, "Design of synthetic quasi-TEM transmission Line for C OS compact integrated circuit," IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2512-2520, Dec. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top