跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:花景柔
研究生(外文):Ching-rou Hua
論文名稱:奈米銀應用於淨水系統之殺菌探討
論文名稱(外文):Bactericidal study of nanosilver applied in water purification system
指導教授:胡苔莉胡苔莉引用關係
指導教授(外文):Tai-lee Hu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:84
中文關鍵詞:高密度聚乙烯管殺菌劑t99奈米銀
外文關鍵詞:silver nanoparticlest99bactericidehigh density polyethylene pipes
相關次數:
  • 被引用被引用:4
  • 點閱點閱:811
  • 評分評分:
  • 下載下載:187
  • 收藏至我的研究室書目清單書目收藏:0
自古以來銀即作為抑制細菌生長之藥劑。奈米科技將銀奈米化後,可以更多元化地應用於日常生活中,以避免微生物對人類健康造成危害。本研究探討奈米銀應用於淨水系統之殺菌效果,其中包括經特殊方法將奈米銀粉(NS-PA/NS-PB)披覆於活性碳(AC-PA/AC-PB),測試奈米銀粉與該材質對細菌之殺菌能力以及含奈米銀之高密度聚乙烯管(HDPE-Ag)之消毒能力。
首先比較奈米銀粉(NS-PA/NS-PB)之殺菌能力,由抑菌圈結果顯示NS-PB對細菌之抑菌效果較NS-PA佳。殺菌能力方面,NS-PB (5 μg/ml)與E. coli、Leg. anisa及Staph. aureus (105 CFU/ml)分別接觸30 min後,可達t99之效果;NS-PB與上述各菌在低菌量(102 CFU/ml)接觸,達t99則只需19.3 min。NS-PB對G(-)殺菌能力比G(+)強。
接著探討披覆奈米銀活性碳(AC-PB)之殺菌能力。披覆銀濃度為5 μg/ml之奈米銀活性碳(AC-PB1)與E. coli菌液(105 CFU/ml)接觸之t99為29.8 min。銀濃度維持不變,與在低菌數(102 CFU/ml)之細菌接觸,t99則為10.2 min。AC-PB1亦對Leg. anisa具有殺菌效果,可使Leg. anisa (103 CFU/ml)於30 min內完全死亡。AC-PB之殺菌力比利用化學還原方式將Ag+還原成Ag0披覆於活性碳材質之殺菌力強。AC-PB1與多種細菌混合液接觸之t99會比與單一菌株作用之t99增加10 min。
以HDPE製成之配水管線,其含奈米銀內壁(HDPE-Ag)與E. coli菌液(1.6×102 CFU/ml)接觸2 h後,可使55% E. coli死亡。含生菌數為3.7×103 CFU/ml之水樣以2 cm/s之速度分別連續送入HDPE與HDPE-Ag為材質之配水系統,經過32天其出流水之生菌數變化不大。若水流速度降為0.15 cm/s,8天後,流經HDPE-Ag管之出流水生菌數(3.5×102 CFU/ml)比流經HDPE管(1.4×104 CFU/ml)低40倍,證明HDPE-Ag管材具殺菌能力。
Silver has long been used as an antibacterial agent. After nanotechnology developed silver nanoparticles, silver could have been more diversely applied in our daily life to prevent human health from the damage caused by microorganisms. This research addresses the bactericidal effect of applying silver nanoparticles to water purification system. To examine the bactericidal capability of activated carbon coated with silver nanoparticles (AC-PA/AC-PB) and high density polyethylene pipes (HDPE-Ag) that contains silver nanoparticles.
First, the bactericidal capability of NS-PA to that of NS-PB was compared. The results of inhibition zone demonstrated that NS-PB performed better than NS-PA in bactericidal capability. After NS-PB (5 μg/ml) contacted with bacterial suspension containing 105 CFU/ml of E. coli, Leg. anisa, and Staph. aureus for 30 min respectively, a t99 effect could be achieved. However, while NS-PB contacted with the above-mentioned bacteria (with the concentration of 102 CFU/ml), it only took 19.3 min to reach t99. From this result, it was concluded that NS-PB performs better bactericidal activity for G(-) than for G(+).
Subsequently, the bactericidal properties of activated carbon coated with silver nanoparticles (AC-PA/AC-PB) were discussed. The concentration of the coated silver nanoparticles on the activated carbon (AC-PB) was 5 μg/ml and the compound was exposed to E. coli solution (105 CFU/ml) with t99 for 29.8 min. As maintaining the concentration of the silver unchanged, the t99 of the bacterial contact was 10.2 min in the low bacterial count condition (102 CFU/ml). AC-PB also had bactericidal effect for Leg. anisa. It could exterminate Leg. anisa (103 CFU/ml) within 30 min. AC-PB had stronger bactericidal effect than the active carbon material coated by Ag0 which was recovered from Ag+ by chemical reduction. The t99 of exposing AC-PB to bacterial mixtures increased 10 min as compared to the t99 of exposing AC-PB to single species of bacteria.
If using HDPE as materials for water distribution pipes, it contained silver nanoparticles on the inner layer (HDPE-Ag), which contacted with E. coli (1.6×102 CFU/ml) and resulted in the death of 55% E. coli within 2 hours. The outlet water quality is compared, as the inlet water containing bacterial count of 3.7×103 CFU/ml was continuously passed through the water distribution system of HDPE and HDPE-Ag pipes respectively with the flow velocity of 2 cm/s. It was found that the change of outlet bacterial count was not significant after 32 days. However, if the water velocity was decreased to 0.15 cm/s, bacterial count would be 40 times lower in the outlet water from the HDPE-Ag pipes (3.5×102 CFU/ml) than HDPE pipes (1.4×104 CFU/ml) after 8 days. The results demonstrate that HDPE-Ag pipes shown to be an effective bactericide when used in the water distribution system.
目 錄
中文摘要 I
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 IX
第一章 前言 1
第二章 文獻回顧 3
2-1水處理之殺菌劑 3
2-2銀與奈米銀 6
2-3銀離子與奈米銀殺菌機制及殺菌力影響 8
2-4銀相關消毒材料之應用 10
2-5活性碳 10
2-6活性碳在水質之處理 12
2-7配水管線水質劣化 14
第三章 材料與方法 16
3-1菌株 16
3-2實驗材料 16
3-2-1奈米銀與披覆有奈米銀之活性碳 16
3-2-2高密度聚乙烯管材 17
3-3材料之殺菌效力測試 17
3-3-1改良式薄膜擴散法 17
3-3-2活性碳吸附細菌測試 18
3-3-3奈米銀及奈米銀活性碳殺菌測試 18
3-3-4管材殺菌測試 19
3-4管線設備系統 19
3-4-1水樣來源 19
3-4-2管線設備之設置 19
3-5 HDPE管材之消毒測試 20
3-6 PCR反應條件之設定 22
3-7 Legionella之偵測極限測試 22
3-8電子顯微鏡之觀察 23
第四章 結果與討論 24
4-1奈米銀殺菌效力 24
4-1-1抑菌圈測試 24
4-1-2奈米銀之殺菌效果 26
4-1-2.1奈米銀與細菌之接觸死亡時間 26
4-1-2.2菌量對奈米銀之殺菌影響 29
4-1-2.3混合菌株對奈米銀殺菌效力之影響 34
4-2奈米銀活性碳之殺菌能力分析 37
4-2-1活性碳吸附細菌之效果 37
4-2-2奈米銀活性碳之殺菌效果 40
4-2-2.1 AC-PA與AC-PB殺菌能力之比較 40
4-2-2.2菌量對奈米銀活性碳之殺菌影響 42
4-2-2.3混合菌株對AC-PB1殺菌效力之影響 45
4-3高密度聚乙烯管壁披覆銀之殺菌效果 48
4-3-1 HDPE材質之殺菌效果 48
4-3-2自來水流速對流經HDPE管水質之影響 48
4-3-3水樣停留於配水管線中對管材之殺菌影響 54
4-3-4 配水系統中致病菌Legionella sp.之檢測 57
第五章 結論與建議 62
5-1結論 62
5-2建議 63
第六章 參考文獻 64
附錄一 奈米銀之抑菌效菌 73

圖 目 錄
圖3-1 HDPE與HDPE-Ag管之內徑、厚度及長度 20
圖3-2 模擬配水管線系統 21
圖4-1 奈米銀粉(NS-PB)對混合菌株之殺菌情形 35
圖4-2 NS-PB對混合菌株之殺菌情形 36
圖4-3 活性碳吸附E. coli之情形 39
圖4-4 E. coli 與AC-PB1接觸15 min之情形 43
圖4-5 AC-PB1對混合菌株之殺菌情形 46
圖4-6 自來水流經模擬配水系統水質變化情形 51
圖4-7 Legionella sp.之PCR偵測極限 58
圖4-8 以模擬配水系統管壁生物膜中Legionella sp.之檢測 60
圖4-9 水樣於模擬配水系統停留2天管壁生物膜Legionella sp.之檢測 61

表 目 錄
表2-1 水媒傳播之病菌 4
表2-2 常見之消毒劑及其作用機制 4
表2-3 消毒劑對E. coli之t99 5
表2-4 奈米銀活性碳之殺菌效力 13
表2-5 管材及流速與配水管線生物膜形成之關係 15
表3-1 奈米銀粉之特性 17
表4-1 奈米銀粉對細菌之抑菌效果 25
表4-2 奈米銀對生長在不同培養基E. coli之抑菌情形 27
表4-3 奈米銀粉與細菌接觸時間及其殺菌力 28
表4-4 初始菌量對奈米銀粉殺菌力之影響 31
表4-5 奈米銀粉對細菌之t99 32
表4-6 奈米銀活性碳對E. coli之殺菌效果 41
表4-7 初始菌數對奈米銀活性碳之殺菌影響 44
表4-8 HDPE-Ag之殺菌力 49
表4-9 靜置處理對HDPE管材殺菌影響 56
行政院環境保護署,1998,水污染防治法規,http://www.epa.gov.tw/
main/index.asp.
行政院環境保護署,2008,飲用水水質標準,http://www.epa.gov.tw/
main/index.asp.
李丁來,1995,配水系統中水質劣化問題之探討,自來水會刊,第56期,pp. 11-16。
李舒寧、盧重興與蔡長憲,1998,自來水配水系統水質二次污染的研究(1)-餘氯,自來水會刊,第17卷,第2期,pp. 1-18。
李連堯與盧重興,1998,自來水配水系統水質二次污染的研究(2)-微生物的再生長現象,自來水會刊,第17卷,第2期,pp. 19-48。
李茂生、許元勳與周振英,2004,退伍軍人菌,中華民國醫檢會報,第19卷,第1期,pp. 1-14。
呂旭峰、劉嘉又與薛樹清,2005,退伍軍人菌之簡介,臨床醫學,第56卷,第1期,pp. 59-52。
美國應用納米集團公司,2007,http://www.antnanousa.com/cnindex.
asp.
周更生、李賢學、高振裕與盧育杰,2006,奈米銀,科學發展,第408期,pp. 32-39。
高肇藩,1990,給水工程(衛生工程.自來水篇),宏榮出版社,台南市。
陳文樟,2006,簡介活性碳製造、分類及應用,中鼎月刊,第321期,pp. 17-21。
陳嘉全、李家維與楊瑞森,1991,生物電子顯微鏡學,行政院國科會精密儀器發展中心,新竹市。
陳鴻烈,鄭慧玲與陳桂梅,1995,以活性碳吸附法去除飲用水源中有機物之研究,中國環境工程學刊,第5卷,第4期,pp. 351-359。
黃鈺茹與黃登福,2007,自來水中氯化消毒副產物之飲用安全性,自來水會刊,第26卷,第3期,pp. 23-36。
順塑膠技術部,2006,認識高密度聚乙烯管-供水管材新知與應用,節約用水季刊,第43期,pp. 25-28。
樓基中與林永璋,2005,自來水配水系統水質診斷技術,自來水會刊,第24卷,第2期,pp. 10-22。
蔡翠菊、康淑娟與林倚利,1998,以活性碳吸附處理染料廢水之探討,光武學報,第23期,pp. 173-190。
歐陽嶠暉,2004,下水道工程學,長松文化公司,台北。
Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., Domann, E. and Schnettler, R., 2004, An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement, Biomaterials, Vol. 25, pp. 4383-4391.
Atiyeh, B. S., Costagliola, M., Hayek, S. N. and Dibo, S. A., 2007, Effect of silver on burn wound infection control and healing: Review of the literature, Burns, Vol. 33, pp. 139-148.
Boehm, H. P., 1994, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, Vol. 32, pp. 759-769.
Bois, F. Y., Fahmy, T., Block, J. C. and Gatel, D., 1997, Dynamic modeling of bacteria in a pilot drinking-water distribution system, Wat. Res., Vol. 31., pp. 3146-3156.
Bryant, E. A., Fulton, G. P., and Budd, G. C., 1992, Disinfection Alternatives for Safe Drink Water, Van Nostrand Reinhold, USA.
Chen, S., Liu, J. and Zeng, H., 2005, Structure and antibacterial activity of silver-supporting activated carbon fibers, J. Mater. Sci., Vol. 40, pp. 6223-6231.
Chen, X. and Schluesener, H. J., 2008, Nanosilver : a nanoproduct in medical application, Toxicol. Lett., Vol. 176, pp. 1-12.
Cho, K. H., Park, J. E., Osaka, T. and Park, S. G., 2005, The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochim. Acta, Vol. 51, pp. 956-960.
Chu, C., Lu, C. and Lee, C., 2005, Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems, J. Environ. Manage., Vol. 74, pp. 255-263.
Clement, J. L. and Jarrett, P. S., 1994, Antibacterial silver, Metal Based Drugs, Vol. 1, pp. 467-482.
Corapcioglu, M. O. and Huang, C. P., 1987, The surface acidity and characterization of some commercial activated carbons, Carbon, Vol. 25, pp. 569-578.
Dang, T., Lam, D., Reid, S. and Wang, E., 2007, Design of colloidal silver disinfection for a public swimming pool with solar heating, University of Guelph, Proceedings of the ENGG 3100: Design III projects, pp. 63-64.
Dreeszen, P. H., 2003, Biofilm, Edstrom, http://www.edstrom.com/Reso-
urces.cfm?doc_id=23.
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N. and Kim, J. O., 2000, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biome. Mat. Res., Vol. 52, pp. 662-668.
Gagnon, G. A. and Slawson, R. M., 1999, An efficient biofilm removal method for bacterial cells exposed to drinking water, J. Microbiol. Methods., Vol. 34, pp. 203-214.
Inoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., Kanzaki, Y., Hamashima, H. and Sasatsu, M., 2002, Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions, J. Inorg. Biochem., Vol. 92, pp. 37-42.
Jaulhac, B., Nowicki, M., Bornstein, N., Meunier, O., Prevost, G., Piemont,Y., Fleuretee, J. and Monteil H., 1992, Detection of legionella spp. in bronchoalveolar lavage fluids by DNA amplification, J. clin. microbiol., Vol. 30, pp. 920-924.
Kim, T. N., Feng, Q. L., Kim, J. O., Wu, J., Wang, H., Chen, G. C. and Cui, F. Z., 1998, Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite, J. Mater. Sci.: Mater. Med., Vol. 9, pp. 129-134.
Lai, Y., Chen,Y., Zhuang, H. and Lin C., 2008, A facile method for synthesis of Ag/TiO2 nanostructures, Mater. lett., Vol. 62, pp. 3688-3690.
Lechevallierl, M. W., Hassenauer, T. S., Camper, A. K. and Mcfeters, G. A., 1984, Disinfection of bacteria attached to granular activated carbon, Appl. Environ. Microbiol., Vol. 48, pp. 918-923.
Lehtola, M. J., Miettinen, I. T., Keinänen, M. M., Kekki, T. A., Laine, O., Hirvonen, A., Vartiainen, T. and Martikainen, P. J., 2004, Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes, Wat. Res., Vol. 389, pp. 3769-3779.
Lehtola, M. J., Laxander, M., Miettinen, I. T., Hirvonen, A., Vartiainen, T. and Martikainen, P. J., 2006, The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes, Wat. Res., Vol. 40, pp. 2151-2160.
Li, X. Z., Nikaido, H. and Williams, K., 1997, Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins, J. Bacteriol., Vol. 179, pp. 6127-6132.
Li, Y., Leung, P., Yao, L., Song, Q. W. and Newton, E., 2006, Antimicrobial effect of surgical masks coated with nanoparticles, J. Hosp. Infect., Vol. 62, pp. 58-63.
Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R. and Russell, A. D., 1997, Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions, Lett. Appl. Microbiol., Vol. 25, pp. 279-283.
Lin, Y. S. E., Vidic, R. D., Stout, J. E. and Yu, V. L., 1998, Legionella in water distribution systems, J. AWWA, Vol. 90, pp. 112-121.
Lin, Y. S. E., Vidic, R. D., Stout, J. E. and Yu, V. L., 2002, Negative effect of high pH on biocidal efficacy of copper and silver ions in cifontrolling Legionella pneumophila, Appl. Environ. Microbiol., Vol. 68, pp. 2711-2715.
Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., Tam, P. K. H., Chiu, J. F. and Che, C. M., 2006, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res., Vol. 5, pp. 916-924.
Maier, R. M., Pepper, L. L. and Gerba, C. P., 2000, Environmental Microbiology, Academic Press, UK.
Manuel, C. M., Nunes, O. C. and Melo, L. F., 2007, Dynamics of drinking water biofilm in flow/non-flow conditions, Wat. Res., Vol. 41, pp. 551-562.
McDonnell, G. and Russell, A. D., 1999, Antiseptics and disinfectants: activity, action, and resistance, Clin. Microbiol. Rev., Vol. 12, pp. 147-179.
McFeters, G. A. (ed.), 1990, Drinking Water Microbiology, Springer-Verlag, New York.
Miyanaga, S., Hiwara, A. and Yasuda, H., 2002, Preparation and high bacteriostatic action ultrafine silver particles, Sci. Technol. Adv. Mater., Vol. 3, pp. 103-109.
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. and Yacaman, M. J., 2005, The bactericidal effect of silver nanoparticles, Nanotechnol., Vol. 16, pp. 2346-2353.
Pal, S., Tak, Y. K. and Song, J. M., 2007, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol., Vol. 73, pp. 1712-1720.
Park, S. J. and Jang, Y. S., 2003, Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior, J. Colloid Interface Sci., Vol. 261, pp. 238-243.
Pelkonen, K. H. O., Heinonen-Tanski, H. and Hänninen, O. O. P., 2003, Accumulation of silver from drinking water into cerebellum and musculus soleus in mice, Toxicol., Vol. 186, pp. 151-157.
Percival, S. L., Knapp, J. S., Edyvean, R. and Wales, D. S., 1998, Biofilm development on stainless steel in mains water, Wat. Res., Vol. 32, pp. 243-253.
Percival, S. L., Bowler P. G. and Russell D., 2005, Bacterial resistance to silver in wound care, J. Hosp. Infect., Vol. 60, pp. 1-7.
Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-García, M. A. and Moreno-Castilla, C., 2001, Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption, J. Chem. Technol. Biotechnol., Vol. 76, pp. 1209-1215.
Robinson, P. N., Heidrich, B., Tiecke, F., Fehrenbach, F. J. and Rolfs, A., 1996, Species-specific detection of Legionella using polymerase chain reaction and reverse dot-blotting, FEMS Micro. Biol. Lett., Vol. 140, pp. 111-119.
Pugsley, A. P. and Schnaitman, C. A., 1978, Outer membrane proteins of Escherichia coli VII. evidence that bacteriophage-directed protein 2 functions as a pore, J. Bacteriol., Vol. 133, pp. 1181-1189.
Russell, A. D., Sc, D., Path, F. R. C., Pharm, S. and Hugo, W. B., 1994, Antimicrobial activity and action of silver, Progress Med. Chem., Vol. 31, pp. 351-370.
Niven, R., 2005, Investigation of silver electrochemistry water disinfection applications, McGill University, CA.
Sambhy, V., MacBride, M. M., Peterson, B. R. and Sen, A., 2006, Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials, J. Am. Chem. Soc., Vol. 128, pp. 9798-9808.
Sawyer, C. N., McCarty, P. L. and Parkin, G. F., 2003, Chemistry for Environmental Engineering and Science, 5th edn., McGraw-Hill Companies, USA.
Schwartz, T., Hoffmann, S. and Obst, U., 1998, Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered dringing water system, Wat. Res., Vol. 32, pp. 2787-2797.
Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P. and Dash, D., 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnol., Vol. 18, pp. 1-9.
Sobsey, M. D., 1989, Inactivation of health-related microorganisms in water by disinfection processes, Wat. Sci. Tech., Vol. 21, pp. 179-195.
Soini, S. M., Koskinen, K. T., Vilenius, M. J. and Puhakka, J. A., 2002, Effects of fluid-flow velocity and water quality on planktonic and sessile microbial growth in water hydraulic system, Wat. Res., Vol. 36, pp. 3812-3820.
Sondi, I., Goia, D. V. and Matijević, E., 2003, Preparation of highly concentrated stable dispersions of uniform silver nanoparticles, J. Colloid Interface Sci., Vol. 260, pp. 75-81.
Sondi, I. and Salopek-Sondi, B., 2004, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria, J. Colloid Interface Sci.,Vol. 275, pp. 177-182.
Steinert, M., Hentschel, U. and Hacker, J., 2002, Legionella pneumophila: an aquatic microbe goes astray, FEMS Microbiol. Rev., Vol. 26, pp. 149-162.
Tatsuzawa, H., Maruyama, T., Misawa, N., Fujimori, K., Hori, K., Sano, Y., Kambayashi, Y. and Nakano, M., 1998, Inactivation of bacterial respiratory chain enzymes by singlet oxygen, FEBS Lett., Vol. 439, pp. 329-333.
Tchobanoglous, G. and Burton (eds.), F. L., 1991, Wastewater Engineering: Treatment, Disposal and Reuse, 3th edn., McGraw-Hill, USA.
Tortora, G. J., Funke, B. R. and Case, C. L., 2004, Microbiology an Introduction, Brief edition, Pearson Benjamin Cummings, CA.
Wang, J. X., Wen, L. X., Wang, Z. H. and Chen, J. F., 2006, Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects, Mater. Chem. Phys., Vol. 96, pp. 90-97.
Xu, X., Yang, Q., Wang, Y., Yu, H., Chen, X. and Jing, X., 2006, Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles, Eur. Polym. J., Vol. 42, pp. 2081-2087.
Yoshida, K., Tanagawa, M. and Atsuta, M., 1999, Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials, J. Biomed. Materi. Res., Vol. 47, pp. 516-522.
Zhang, S., Fu, R., Wu, D., Xu, W., Ye, Q. and Chen, Z., 2004, Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels, Carbon, Vol. 42, pp. 3029-3216.
Zhang, S., Wu, D., Wan, L., Tan, H. and Fu, R., 2006, Adsorption and antibacterial activity of silver-dispersed carbon aerogels, J. Appl. Polym. Sci., Vol. 102, pp. 1030-1037.
Zhao, G. and Stevens Jr, S. E., 1998, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals, Vol. 11, pp. 27-32.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top