跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴雨璇
研究生(外文):Yu-Xuan Lai
論文名稱:基因轉殖木質醋酸菌表現外源蛋白可行性之研究
論文名稱(外文):The Feasibility of Transformed Acetobacter xylinum Producing Foreign Protein
指導教授:吳聲祺林雅菁林雅菁引用關係
指導教授(外文):Sheng-Chi WuYa-Ching Lin
學位類別:碩士
校院名稱:輔英科技大學
系所名稱:生物技術系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:細菌纖維脂解酵素木質醋酸菌
外文關鍵詞:Acetobacter xylinumLipaseBacterial cellulose
相關次數:
  • 被引用被引用:2
  • 點閱點閱:523
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
木質醋酸菌(Acetobacter xylinum)所產生的細菌纖維素(Bacterial cellulose, BC),是一種由生物聚合的高分子具有生物可分解性、親水能力、超細微纖維等優點,已被廣泛應用於食品工業,作為食品添加物,如保水劑、食品增稠劑、安定劑,或作為高纖食品之原材料,為極具潛力的一項商品。本研究藉由遺傳工程技術將Lipase基因或綠色螢光蛋白基因轉殖片段轉殖(Cloning)於木質醋酸菌中。轉殖的木質醋酸菌能表現這些外源蛋白於細胞表面,將有利於未來食品或其他工業之用途。
Bacterial cellulose (BC) produced from Acetobacter xylinum, is polysaccharide with unique properties including biodegradation, high water holding capacity, and a fine fiber network. With the characteristics, BC has been widely applied to food engineering as food additives, thickener, stabilizer, and high fiber materials. It is promosing commercial materials. In this study, a transformed Acetobacter xylinum carried a lipase gene or green fluorescent protein gene was generated. These foreign proteins were successfully expressed by transformed Acetobacter xylinum and were located in the surface of cells, suggesting a promising application to food or other industries.
誌謝--------------------------------------------------------------------------- i
中文摘要--------------------------------------------------------------------------- ii
英文摘要--------------------------------------------------------------------------- iii
目錄--------------------------------------------------------------------------- iv
表目錄--------------------------------------------------------------------------- vi
圖目錄--------------------------------------------------------------------------- vii
第一章緒論--------------------------------------------------------------------- 1
第二章文獻回顧--------------------------------------------------------------- 2
第一節木質醋酸菌之簡介--------------------------------------------------- 2
一木質醋酸菌之特性--------------------------------------------------- 2
二木質醋酸菌生產細菌纖維素合成之機制------------------------ 4
三木質醋酸菌轉形之相關研究--------------------------------------- 8
四影響細菌纖維素生長之因素--------------------------------------- 9
五細菌纖維素之應用--------------------------------------------------- 11
第二節外源蛋白簡介--------------------------------------------------------- 15
一螢光蛋白--------------------------------------------------------------- 15
二脂解酵素(Lipase)----------------------------------------------------- 16
第三章研究方法--------------------------------------------------------------- 19
第一節實驗流程圖------------------------------------------------------------ 19
第二節實驗材料--------------------------------------------------------------- 20
一菌株--------------------------------------------------------------------- 20
二質體--------------------------------------------------------------------- 20
三引子primers----------------------------------------------------------- 21
四藥品--------------------------------------------------------------------- 22
五DNA 純化套件組---------------------------------------------------- 23
第三節儀器設備--------------------------------------------------------------- 24
第四節實驗方法--------------------------------------------------------------- 25
一菌株的保存與培養--------------------------------------------------- 25
二萃取質體DNA-------------------------------------------------------- 25
三萃取Genomic DNA-------------------------------------------------- 26
四膠體純化PCR產物--------------------------------------------------- 27
五質體與PCR 產物之Digestion-------------------------------------- 27
六質體與PCR 產物之Ligation -------------------------------------- 28
七轉形作用--------------------------------------------------------------- 28
八重組菌株的篩選與培養--------------------------------------------- 30
九西方墨點法分析------------------------------------------------------ 31
十酵素活性分析--------------------------------------------------------- 31
十一纖維分解酵素之作用------------------------------------------------ 32
第四章結果與討論------------------------------------------------------------ 33
第一節轉殖A. xylinum 表現綠色螢光蛋白------------------------------- 33
一建構pET22b 含綠色螢光蛋白基因質體與A. xylinum 的轉殖33
二以不同IPTG 濃度進行外源蛋白誘導---------------------------- 36
三培養方式對轉殖A.xylinum 生產綠色螢光蛋白的影響-------- 38
第二節轉殖A. xylinum 與脂解酵素Lipase 之表現---------------------- 40
一建構pET22b 含與脂解酵素Lipase 基因質體與
A. xylinum 的轉殖----------------------------------------------------- 40
二轉殖菌株質體快速篩選--------------------------------------------- 45
三重組菌株之蛋白質表現--------------------------------------------- 47
四轉殖A. xylinum Lipase 的活性分析------------------------------- 49
第五章結果與討論------------------------------------------------------------ 57
參考文獻--------------------------------------------------------------------------- 58
附錄
王秀玲,2002,木質醋酸菌轉形系統之建立,國立臺灣大學,碩士論文。

王思綺,2002,以大腸桿菌生產肌酸酵素之研究:誘導劑IPTG之酵素,國立成功大學,碩士論文。

吳東和、林慶福,1994,”Nata—被遺忘的機能性食品”,食品工業,26卷,6期,頁42-47.

何佳倫,1996,以醋酸菌發酵柑桔果汁生產細菌纖維素之研究,國立台灣大學,碩士論文。

陳純敏,2003,1,3-二辛酸-2-棕櫚酸甘油酯特化油脂之最優化研究,大葉大學,碩士論文。

陳筱婷,2006,透明顫菌血紅蛋白表現對木質醋酸菌生長及細菌纖維素生產之效應,台灣科技大學,碩士論文。

鄭海鵬,2001,多重網狀導流板氣舉式反應器之規模放大及其在細菌纖維素生產上之應用,國立清華大學,碩士論文。

Alaban, C. A., 1962, “Studies on the optimum conditions for “Nata de coco” bacterium or “Nata” formation in coconut water” Philip. Agric, Vol. 45, pp. 490-516.

Ben-Bassat, A. Calhoon, Roger D., Fear. Anna L., Gelfand, David H., Meade. James H., Tal. Rony, Wong. Hing and Benziman. Moshe, 1993, “Methods and nucleic acid sequences for expression of the cellulose synthase operon, US patent 5268274.

Blackwell, J., 1982, The macromolecular organization of cellulose and chitin. Cellulose and other nature polymer systems, Plenum Publishing Corp., New York. pp.327-329.

Berglund, P., 2001, “Controlling lipase enantioselectivity for organic synthesis.” Biomolecular Enginnering, Vol. 18, pp. 13-22.

Banzon, J. A., Gonzalez, O.N., Dedeon, S. Y. and Sanchez, P. C., 1990, Chapter XIV Nata de coconut as food. The Philippine coconut research and development foundation.

Chien, L. J., 2006, “Enhancement of Cellulose Pellicle Production by Constitutively Expressing Vitreoscilla Hemoglobin in Acetobacter xylinum.” Biotechnology Progress, Vol. 22, pp. 1598-1603.

Cannon, R. E. and Anderson, S. M., 1991, “Biogenesis of bacterial cellulose ” Critical Reviews in Microbiology, Vol. 17, pp. 415-447.

Czaja, W., Young, D.J., Kawecki, M. and Brown Jr., R.M., 2007, The future prospects of micirobial cellulose in biomedical applications.” Biomacromolecules, Vol. 8, pp. 1–12.

Chalfie, M., 1994, “Green fluorescent protein.” Photochemistry and Photobiology, Vol. 62, pp. 651–656.

Campo, C., M. Garcia, A. Gradillas, E. F. Llama, L. Salazar, J. M. S�鴨chez-Montero and J. V. Sinisterra, 1993, “Enantiospecific hydrolysis of esters of nonstereoidal anti-inflammatory drugs using lipase of Candida cylindracea.” Journal of Molecular Catalysis, Vol. 84, pp. 399-405.

Colquhoun, I. J., Defernez, M. and Morris, V. J., 1995, “NMR studies of acetan and the related bacterial polysaccharide, CR 1/4, produced by a mutant strain of Acetobacter xylinum.” Carbohydrate Research, Vol. 269, pp. 319-331.

David, K. R., Karaolis, Mohammed H. Rashid,1 Rajanna Chythanya, “c-di-GMP (3-5-Cyclic Diguanylic Acid) Inhibits Staphylococcus aureus Cell-Cell Interactions and Biofilm Formation.” Antimicrobial Agents and Chemotherapy, Vol. 40, No. 3, pp. 1029–1038.

Dudman, W. F., 1959b, “Cellulose production by Acetobacter acetigenum in defined medium.“ Journal of General Microbiology, Vol. 21, pp. 327-337.

Errampalli, D., Leung, K., Cassidy, M.B., Kostrzynska, M., Blears, M., Lee, H., Trevors, J.T., 1999, “Applications of the green fluorescent protein as a molecular marker in environmental microorganisms.” Journal of Microbiological Methods, Vol. 35, pp. 187-199.

Emubuscado, M. E., Marks, J. S. and Bemiller, J. N., 1994a, “Bacterial cellulose I Factors affection the production of cellulose by Acetobacter xylinum” Food Hydrocoll, Vol. 8, No. 5, pp. 419-430.

Embuscado, M. E., Marks. J. S. and Bemiller, J. N., 1994b, “Bacterial cellulose �D. Optimization of cellulose production by Acetobacter xylinum through response surface methodology.” Food Hydrocolloids, Vol. 8, pp. 419-430.

Fontana, J. D., de Sousa, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti, B.J., 1990, “Acetobacter cellulose pellicle as a temporary skin substitute.” Applied Biochemistry and Biotechnology, Vol. 25, pp. 253–264.

Fujiwara, M., Fukushi, K., Takai, M., Hayashi, J., Fukaya, M., Okumura, H. and Kawamura, Y., 1992, “Construction of shuttle vectors derived from Acetobacter xylinum for cellulose-producing bacterium Acetobacter xylinum.” Biotechology Letters, Vol. 14, No. 7, pp. 539-542.

Gerdes, H., and Kaether, C., 1996, “Green fluorescent protein: application in cell biology.” FEBS Letters, Vol. 38, pp. 44-47.

Hestrin, S. and Schramm, M., 1954, “Synthesis of cellulose by Acetobacter xylinum. Ⅱ. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose.” Biochemical Journal, Vol. 58, pp. 345-352.

Johnson, D. C., and Neogi, A. N., 1989, “Sheeted products formed from reticulated microbial cellulose.” US patent 4863565.

Ju, Y. H., and Huang, F. C., 1995, “Lipase immobilized on hydrophobic microporous polypropylene for the hydrolysis of palm kernel olein.” Applied Biochemistry and Biotechnology, Vol. 55, pp. 17-26.

Krieg, N., 1984, Bergey’s Manual of Systematic Vacteriology Vol. 1, The Williams and Wilkins Co., Baltimore MD., pp. 267-274.

Kent, R. A., Stephens, R. S. and Westland, T. A., 1991, “Bacterial cellulose fiber provides an alternative for thickening and coating.” Food Technology, Vol. 45, No. 6, pp. 108.

Klemm, D., Schumann, D., Udhardt, U. and Marsch, S., 2001, “Bacterial synthesized cellulose – artificial blood vessels for microsurgery.” Progress Polymer Science, Vol. 26, pp. 1561-1603.

Kouda, T., H. Yano and F. Yoshinaga, 1997, “Effect of Agitator Configuration on Bacterial Cellulose Productivity in Aerated and Agitated Culture.” Journal of Fermentation and Bioengineering, Vol. 83, No. 4, pp. 371-376.

Lapuz, M. M., Gallardo, E. G. and Dalo, M. A., 1967, “The Nata organism-Cultural requirement, characteristics and identify” The Philippine Journal of Science, Vol. 96, No. 2, pp. 91-96.

Liang-Jung Chien, 2006, “Enhancement of Cellulose Pellicle Production by Constitutively Expressing Vitreoscilla Hemoglobin in Acetobacter xylinum.” Biotechnology Progress, Vol. 22, pp. 1598-1603.

Mingarro, I., C. Abad, and L. Braco, 1995, “Interfacial activation-based molecular bioimprinting of lipolytic enzymes.” The Proceedings of the National Academy of Sciences, Vol. 92, pp. 3308-3312.

Macrae, A. R., 1983, “Lipase-catalyzed interesterification of oils and fats.” Journal of the American Oil Chemists’ Society, Vol. 62, pp. 291-294.

Margolin, A. L., 1993, “Enzymes in the synthesis of chiral drugs.” Enzyme and Microbial Technology, Vol. 15, pp. 266-280.

Masaoka, S., Ohe, T. and Sakota, N., 1993, “Production of cellulose from glucose by Acetobacter xylinum” Journal of Fermentation and Bioengineering, Vol. 75, No. 1, pp. 18-22.

Magdiel, I. S., 2007, “Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O2 tension maximizes bacterial cellulose pellicle production.” Journal of Biotechnology, Vol. 132, pp. 38–435.

Nichols, S. E., and Singletary, G. W., 1998, “Cellulose synthesis in the storage tissue of transgenic plants.” US patent 5723764.

Nakai, T., Moriya, A., Tonouchi, N., Tsuchida, T., Yoshinaga, F., Horinouchi, S., Sone, Y., Mori, H., Sakai, F. and Hayashi, T., 1998, “Control of expression by the cellulose synthase (bcsA) promoter region from Acetobacter xylinum BPR2001.” Gene, Vol. 213, pp. 23-100.

Naylor, L.H., 1999, “Reporter Gene Technology: The Future Looks Bright.” Biochemical Pharmacology, Vol. 58, pp. 749-757.

Okiyama, A., Motoki, M. and Yamanaka, S., 1993, “Bacterial cellulo Ⅲ. Development of a new form of cellulose.” Food Hydrocolloids, Vol. 6, pp. 493-501.

Ohana, P., Deborah P. Delmer, Gail Volman and Moshe Benziman, 1998, “Glycosylated triterpenoid saponin: a specific inhibitor of diguanylate cyclase from Acetobacter xylinum.” Plant Cell Physiol, Vol. 39, pp. 153-159.

Ohmori, S., Masai, H. Arima, K. and Beppu, T., 1980, “Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high temperature.” Agricultural and Biological Chemistry, Vol. 44, pp. 2901-2906.

Palekar, A., A. Vasudevan, and P. T. Yan., 2000, “S. Purification of lipase: a review.” Biocat and Biotransf, Vol. 18, pp. 177−200.

Ross, P., Mayer, R. and Benziman, M., 1991, “Cellulose biosynthesis and function in bacteria” Microbiology Reviews, Vol. 55, pp. 35-58.

Sarda, L., and P. Desnuelle, 1958, “Action de la lipase pancreatique sur les esters en emulsion.” Biochimica et Biophysica Acta, Vol. 30, pp. 523-521.

Sproull, K. C., G. T. Bowman, G. Carta, and J. L., 1997, “Enzymatic transformation of thio acids and thio esters.” Biotechnology Progress, Vol. 13, pp. 71-76.

Sheldon, R. A., 1996, “Chirotechnology: Designing economic chiral syntheses.” Journal of Chemical Technology & Biotechnology, Vol. 67, pp. 1-14.

Schmid, U., Bornscheueer, U.T., Soumanou, M.M., McNEIL, G.P. and Schmid, R.D.,1998, “Optimization of the reaction conditions in the lipase-catalyzed synthesis of structured triglycerides.” Journal of the American Oil Chemists’ Society, Vol. 75, pp. 1527-1531.

Saturnino-Dimaguila, 1967, “The Nata de coco I. Characterization and identity of the causal organism.” Phil Agric. Vol. 51, pp. 462-474.

Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Gatenholm, P, 2005, “Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.” Biomaterials, Vol. 26, pp. 419–431.

Tarr, H L. A. and Hibbert, H., 1931, “Polysacharide synthesis by the action of Acetobacter xylinum on carbohydrates and related compounds.” Canadian Journal of Forest Research, Vol. 4, pp. 372-388,

Tonouchi, N., Tsuchida, T., Yoshinaga, F., Horinouchi, S. and Beppu, T.,1994, “A host-vector system system for a cellulose-producing Acetobacter strain.” Bioscience, Biotechnology, and Biochemistry, Vol. 58, pp. 1899-1901.

Tonouchi, N., Tsuchida, T., Yoshinaga, F. and Beppu, T., 1996, “Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum.” Bioscience, Biotechnology, and Biochemistry, Vol. 60, pp. 1377-1379.

Virapong, P., Chartchalerm, I. Na A., Leif, B., 2001, “Lighting E. coli cells as biological sensors for Cd2+.” Biotechnology Letters, Vol. 23, pp. 1285-1291.

Valla, S., Dag Hugo Coucheron, Espen Fj�礽vik, Johs Kjosbakken, Haim Weinhouse, Peter Ross, Dorit Amikam and Moshe Benziman, 1989, “Cloning of gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose-negative mutant by the UDPG pyrophosphorylase structure gene.” Molecular Genetics and Genomics, Vol. 217, pp. 26-30.

Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., Benziman, M., Gelfand, D. H., Meade, J. H., Emerick, A. W., Bruner, R., Ben-Bassat, A. and Rony, T., 1990, “Genetic organization of cellulose synthase operon in A. xylinum.” The Proceedings of the National Academy of Sciences, Vol. 87, pp. 8130-8134.

Williams, W. S. and Cannon, R. E., 1989, “Alternative environmental roles for cellulose produced by Acetobacter xylinum.” Applied Environmental Microbiology, Vol. 55 No. 10, pp. 2448-2452.

Yunus, W. M. Z., Salleh, A. B., Ismail, A., Ampon, K., Razak, C. N. A.,and Basri, M., 1992, “Poly(Methyl methacrylate) as a matrix for immobilization of lipase.” Applied Biochemistry and Biotechnology, Vol. 25, pp. 97-105.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top