(35.175.212.130) 您好!臺灣時間:2021/05/15 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:葉佳青
研究生(外文):Chia-Ching Yeh
論文名稱:利用奈米零價鐵處理土壤中草脫淨之可行性研究
論文名稱(外文):The feasibility study of the treatment of Atrazine in soil with zero-valent iron nanoparticles
指導教授:丁健原丁健原引用關係
指導教授(外文):Jiann-Yuan Ding
學位類別:碩士
校院名稱:輔英科技大學
系所名稱:環境工程與科學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:43
中文關鍵詞:pH土壤草脫淨零價奈米鐵顆粒
外文關鍵詞:atrazinenanoparticleszero-valent ironherbicidesoilpH
相關次數:
  • 被引用被引用:1
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
草脫淨(Atrazine)是一種常用的除草劑,台灣地區亦曾廣泛地使用。因此在水或土壤環境中皆可能殘留。近來,奈米科技蓬勃發展,而零價奈米鐵顆粒應用於污染處理亦頗有成效。
本研究乃利用零價奈米鐵顆粒處理水相系統及土相系統中的Atrazine,以探討其去除效果及實際應用的可行性。研究結果發現:加酸調降系統的pH值可有效提升Atrazine的去除率;增加零價奈米鐵顆粒雖可增加Atrazine的去除率,但效果有限,只要使用最低充足量即可。土相系統中Atrazine的去除效果明顯優於水相系統的結果,可能是酸性紅壤土的緩衝效應所致。以偏磷酸鈉做為土讓顆粒的分散劑有助於提升土相系統中Atrazine的去除率。
利用零價奈米鐵顆粒去除水相系統或土相系統中的Atrazine,在方法上應屬可行,尤其是調降系統pH值或添加土壤顆粒分散劑。但在實際應用上,應再評估其經濟效益。
Atrazine is one of the widely used herbicides, and can be found in water or soil in Taiwan. In recent, nanotechnologies were developing and the zero-valent iron nanoparticles were used to remediate the contaminants in environments.
The object of this study is to estimate the feasibility of the treatment of atrazine in water or soil with zero-valent iron nanoparticles. The results indicated that the decrease of initial pH in the water or soil systems can increase the removal of atrazine significantly. In addition, the increase of the applied amount of zero-valent iron nanoparticles in water may just only increase the removal of atrazine a few. Those experiments indicated that the effect of lower pH in system is more dominant than it of the applied amount of zero-valent iron nanoparticles. The removal of atrazine in soil is more than it in water, may be regard as the buffering capacity of soil that maintains the lower pH in the system. Apply (NaPO4)n to separate the particles of soil, can increase the removal of atrazine in soil system, it maybe owing to increase the possibility of contact of zero-valent iron nanoparticles and atrazine on soil particles.
In the methodology of the treatment of atrazine in water or soil system with zero-valent iron nanoparticles is feasible. In addition, the economic efficiency of the treatment of zero-valent iron nanoparticles and atrazine in water or soil system is necessary to estimate and assess.
目錄
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 v

第一章 緒論 1
1-1 研究目的 1
1-2 研究內容 3
1-3 研究流程示意圖 3
第二章 文獻回顧 5
2-1 農藥介紹 5
2-2 草脫淨(Atrazine)之去除研究 7
2-3 零價奈米鐵對有機氯化物脫氯反應之反應機制研究 8
2-4 奈米金屬的製備 10
2-5 零價鐵之應用 11
2-6 pH 變化之影響 11
第三章 研究方法 13
3-1 水相實驗 13
3-1-1 零價奈米鐵顆粒的合成 13
3-1-2 水相系統添加入不同量的零價奈米鐵顆粒 13
3-1-3 水相系統中不同的初始pH值 14
3-1-4 水相系統中不同處理時間 14
3-1-5 水相系統中初始pH值為4與不同零價奈米鐵顆粒量 15
3-2 土相實驗 15
3-2-1 配置污染土壤 15
3-2-2 土相系統中不同的初始pH值 16
3-2-3 土相系統中不同零價奈米鐵顆粒量 16
3-2-4 土相系統中加入不同量土壤顆粒分散劑 17
3-3 分析方法 17
3-4 檢量線製作 17
3-4-1 定性與定量試驗 18
3-4-2 回收率試驗 19
3-5 實驗器材及其它藥品溶劑試藥 19
3-5-1 藥品溶劑試藥 19
3-5-2 實驗器材 19
3-5-3 器皿 19
3-6 奈米鐵顆粒之特性分析 20
第四章 結果與討論 21
4-1 水相實驗之結果與討論 21
4-1-1 水相中不同零價奈米鐵使用量對 Atrazine 去除率之影響 21
4-1-2 水相中不同pH值對 Atrazine 去除率之影響 23
4-1-3 水相中不同反應時間對 Atrazine 去除率之影響 25
4-1-4 水相中系統pH值為4時,不同零價奈米鐵顆粒使用量對Atrazine去除率之影響 27
4-2 土相實驗之結果與討論 30
4-2-1 土相系統中不同的初始pH值對土壤 Atrazine 去除率之影響 30
4-2-2 土相系統中不同零價奈米鐵顆粒使用量對 Atrazine 去除效率之影響 32
4-2-3 土相系統中添加不同量之土壤分散劑對 Atrazine 去除率之影響 33
第五章 結論與建議 35
5-1 結論 35
5-2 建議 36
參考文獻 40


圖目錄
圖1-1、研究流程示意圖 4
圖3-1、Atrazine檢量線圖 18
圖3-2、HPLC分析Atrazine之圖譜 19
圖3-2、零價奈米鐵顆粒之SEM影像圖 20
圖4-1、水相系統中不同零價奈米鐵顆粒使用量與 Atrazine 去除率之關係圖 22
圖4-2、水相系統中 Atrazine 殘留濃度與零價奈米鐵顆粒使用量之關係圖 23
圖4-3、水相系統中不同初始pH值與 Atrazine 去除率之關係圖 24
圖4-4、水相系統中 Atrazine 殘留濃度與系統pH值之關係圖 25
圖4-5、水相系統中不同反應時間與 Atrazine 去除率之關係圖 26
圖4-6、水相系統中Atrazine殘留濃度與不同反應時間之關係圖 27
圖4-7、水相系統中pH值為4時,不同零價奈米鐵顆粒使用量與Atrazine去除率之關係圖 28
圖4-8、水相系統中不同pH值及不同零價奈米鐵顆粒使用量與Atrazine去除率之關係圖 29
圖4-9、土相系統中不同的初始pH值與Atrazine去除率之關係圖化 31
圖4-10、土相系統中Atrazine殘留濃度與系統初始pH值之關係圖 31
圖4-11、土相系統不同零價奈米鐵顆粒使用量與 Atrazine 去除率之關係圖 32
圖4-12、土相系統不同零價奈米鐵顆粒使用量與 Atrazine 去除率之關係圖 35
Bianchi C. L., C. Pirola, V. Ragaini and E. Selli. 2006. Mechanism and efficiency of atrazine degradation under combined oxidation processes. Applied Catalysis B: Environmental 64(1-2):131-138.

Campos C., V. L. Snoeyink, B. Marinas, I. Baudin and J. M. Laine. 2000. Atrazine removal by powdered activated carbon in floc blanket reactors. Water Research 34(16):4070-4080.

Chan K. H.and W. Chu. 2005. Atrazine removal by catalytic oxidation processes with or without UV irradiation: Part II: an analysis of the reaction mechanisms using LC/ESI-tandem mass spectrometry. Applied Catalysis B: Environmental 58(3-4):165-174.

Chen J. L., S. R. Al-Abed, J. A. Ryan and Z. Li. 2001. Effects of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials 83(3):243-254.

Dombek T., D. Davis, J. Stine and D. Klarup. 2001. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions. Environmental Pollution 111(1):21-27.

Dombek T., D. Davis, J. Stine and D. Klarup. 2004. Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1, 3, 5-triazine) deisopropy1 atrazine ((2-amino-4-chloro-t-ethylamino-1, 3, 5-triazine)) andchlorinated dimethoxy triazine (2-chloro-4, 6-dimethoxy-1, 3, 5-triazine) by zero valent iron and electrochemical reduction. Environmental Pollution 129(2):267-275.

Feitz A. J., S. H. Joo, J. Guan, Q. Sun, D. L. Sedlak and W. T. David. 2005. Oxidative transformation of contaminants using colloidal zero-vaent iron. Collids and Surfaces A : Physicochemical and Engineering Asects 265(1-3):88-94.

Ghauch A., C. Gallet, A. Charef, J. Rima and M. Martin-Bouyer. 2001. Reductive degradation of carbary1 in water by Zero-valent iron. Chemosphere 42(4):419-424.

Ghauch A. and J. Suptil. 2000. Remediation of s-triazines contaminated water in a laboratory scale apparatus using zero-valent iron powder. Chemosphere 41(12):1835-1843.

Ghosh P. K. and L. Philip. 2004. Atrazine degradation in anaerobic environment by a mixed microbial consortium. Water Research 38(9):2277-2284.

Hoser A., N. Hilbrandt, M. Martin and M. Denecke. 1995. In situ XAS-study on transition metal doped metal oxides. Physica B (208&209):321-322.

Huang Y. H. and T. C. Zhang. 2005. Effects of dissolved oxygen on formation of corrosion products and concomitant oxgen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Research 39(9):1751-1760.

Jia Y., R. Wang and A. G. Fane. 2006. Atrazine adsorption from aqueous solution using powdered activated carbon—Improbed mass transfer by air bubbling agitation. Chemical Engineering Journal 116(1): 53-59.

Johnson T. L., W. Fish, Y. A. Gorby and P. G. Tratnyek. 1998. Degradation of carbon tetrachloride by iron metal:Complexation effects on the oxide surface. Journal of Contaminant Hydrology (29):379-398.

Joo H. S., A. J. Feitz, D. L. Sedlak and T. D. Waite. 2005. Quantification of the oxidizing capacity of nanoparticultate zero-valent iron. Environ. Sci. Technol. 39(5):1263-1268.

Joo S. H., A. J. Feitz and T. D. Waite. 2004. Oxidative Degradation of the Carbothioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 38(7):2242-2247.

Kobayashi K., H. Maruyama, H. Maeda, T. Iwazumi, H. Kawata and H. Yamazaki. 1995. Magnetic EXAFS study of pure Fe and Fe-oxides at Fe K-edge. Physica B (208&209):779-780.

Li Y.,Liu J., Y. Wang and Z. L. Wang. 2001. Preparation of Monodispersed Fe-Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes. Chem. Mater.(13):1008-1014.

Li F., C. Vipulanandan and K. K. Mohanty. 2003. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and Surfaces A(223):103-112.

Lien H. L. and W. X. Zhang. 2002. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al. Chemosphere (49): 371-378.

Li C. W., Y. M. Chen and S. S. Chen. 2005. Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere 59(6):753-759.

Monson S. J., L. Ma, D. A. Cassada and R. F. Spalding. 1998. Confirmation and method development for dechlorinated atrazine from reductive dehalogenation of atrazine with Fe0. Analytica Chimica Acta(373):153-160.

Rangsivek R. and M. R. Jekel 2005. Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Research 39(17):4153-4163.

Suzuki S., T. Suzuki, M. Kimura, Y. Takagi, K. Shinoda, K. Tohji and Y. Waseda. 2001. EXAFS characterization of ferric oxyhydroxides. Applied Surface Science 169-170:109-112.

Volpe A., A. Lopez, G. Mascolo and A. Detomaso. 2004. Chlorinated herbicide(triallate) dehalogenation by iron powder, Chemosphere (57):579-586.

Ventura A., G. Jacquet, A. Bermond and V. Camel. 2002. Electrochemical generation of the Fenton’s reagent: application to atrazine degradation. Water Research 36(14):3517-3522.

Westerhoff P. and J. James. 2003. Nitrate removal in zero-valent iron packed columns. Water Research 37(8):1818-1830.

Yadav O. P., A. Palmqvist, N. Cruise., K. Holmberg. 2003. Synthesis of platinum nanoparticles in microemulsions and their catalytic activity for the oxidation of carbon monoxide. Colloids and Surfaces A (221):131-134

Zhang W. X. 2003. Nanoscale Iron Particles for Environmental Remediation: An Overview. Journal of Nanoparticle Research (5):323-332.

Zhang W. X., C. B. Wang and H. L. Lien. 1998. Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles. Environmental Engineering Catalysis Today (40):387-395.

丁健原,1995,疏水性污染物在多孔介質中的三相傳輸模式研究。台灣大學,環境工程學研究所,博士論文。

王一雄,1997,「土壤環境污與農藥」,文海書局。

周豐志、蔡易縉,2006,超音波於不同pH環境下對零價鐵表層活化之影響研究。中華民國環境工程學會第四屆土壤地下水研討會,台中。

連興隆,2004,環境奈米技術在地下環境應用之回顧與展望。環境工程會刊。15(3):22-29。

高自宏,2005,零價奈米鐵對有機氧化物脫氯反應之反應機制研究。嘉義大學,應用化學系研究所,碩士論文。

許元正,2003,英國環境水體中殺蟲劑殘留監測概況,http://www.niea.gov.tw/analysis/publish/month/48/48th3-1.htm。

陳建良、連興隆,2004,奈米級零價鐵金屬對五價砷吸附效果之探討。第一屆環境保護與奈米科技學術研討會論文集。

楊金鐘、許菁珊,2004,奈米級零價鐵對於水體中之硝酸鹽去除效率探討,中華民國境工程學會第十六屆年會暨學術研討會論文摘要集,台南。

廖秋榮,2006,以奈米零價鐵結合過氧化氫處理含五氯酚污染土壤。第三屆環境保護與奈米科技學術研討會,新竹。

蔣慕錟、蔣永正,1983,台灣旱田雜草之種類、生態及危害。中華民國雜草學會彙刊4:30-41

蔣永正,1986,殺草劑抗藥性之探討。中華民國雜草學會彙刊7:21-35。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊