[1]宮大川,林恬宇,「從Melnyk 和Browne的模式建構生產活動控制系統所需的功能模組」,第八屆全國自動化科技研討會論文集(二) ,民國八十四年,第727-734頁。
[2]陳敬瑜,「使用演化式演算法最佳化彈性製造系統之生產規劃」,逢甲大學資訊工程研究所碩士論文,民國九十三年一月。[3]王世佑,「探討流程自動化機構之模組式建構法-以彈性製造系統為例」,朝陽科技大學工業工程與管理研究所碩士論文,民國九十三年七月。[4]王智玲,「延伸自組映射圖分群集合式類別型資料」,國立雲林科技大學資訊管理系碩士班碩士論文,2006。
[5]Jones, A. T., and Saleh, A., “A multi-level/multi-layer architecture for intelligent shop floor control.”, International Journal of Computer Integrated Manufacturing, 3, 1990, pp.60-70.
[6]Smith, J. S., Hoberecht, W. C., and Joshi, S. B., “A shop-floor control architecture for computer-integrated manufacturing.”, IIE Transactions, 28, 1996, pp.783-794.
[7]Cho, H., and Wysk, R. A., “Intelligent workstation controller for computer-integrated manufacturing: problems and models.”, Journal of Manufacturing Systems, 14, , 1995, pp.252-263.
[8]Chang, T. C., Wysk, R. A., and Wang, H. P., “Computer-Aided Manufacturing”, 2nd edn, 1998 (Prentice-Hall: Eaglewood Cliffs).
[9]Cho, H., and Wysk, R. A., “A robust adaptive scheduler for an intelligent workstation controller.”, International Journal of Production Research, 31, 1993, pp.771-789.
[10]Chiu, C., and Yih, Y., “A learning-based methodology for dynamic scheduling in distributed manufacturing systems.” International Journal of Production Research, 33, 1995, pp.3217-3232.
[11]Park, S. C., Raman, N., and Shaw, M. J., “Adaptive scheduling in dynamic flexible manufacturing systems: a dynamic rule selection approach.”, IEEE Transactions on Robotics and Automation, 13, 1997, pp.486-502.
[12]Wein, L. M., “Scheduling semiconductor wafer fabrication.”, IEEE Transactions on semiconductor manufacturing, 1, 1988, pp.115-130.
[13]Kumar, P. R., “Scheduling semiconductor manufacturing plants.”, IEEE Control Systems, December, 1994, pp.33–40.
[14]Li, S., Tang, T. and Collins, D. W., “Minimum inventory variability schedule with application in semiconductor fabrication.” IEEE Transactions on Semiconductor Manufacturing, 9, 1996, pp.145–149.
[15]Baker, K. R., “Sequencing rules and due-date assignments in a job shop.”, Management Science, 30, 1984, pp.1093-1104.
[16]Tang, L. L., Yih, Y. and Liu, C. Y., “A framework for part type selection and scheduling in FMS environments.”, International Journal of Computer Integrated Manufacturing, 8, 1995, pp.102–115
[17]Su, C. T., and Shiue, Y. R., “Inteligent scheduling controller for shop floor control systems: a hybrid genetic algorithm/decision tree learning approach.”, International Journal of Production Research, 41, 2003, pp.2619-2641.
[18]Sun, Y. L. and YIH, Y., “An intelligent controller for manufacturing cells.”, International Journal of Production Research, 34, 1996, pp.2353-2373.
[19]Priore, P., De La Fuente, D., Gomez, A. and Puente, J., “A review of machine learning in dynamic scheduling of flexible manufacturing systems.”, Artificial Intelligence for Engineering Design, Analysis & Manufacturing, 15, 2001, pp.251-263.
[20]Kohonen, T., “Self-Organizing Map third edition” (New York, NY: Springer-Verlag), 2001.
[21]Groover, M. P., “Automation, Production Systems, and Computer-Integrated Manufacturing”, Prentice-Hall, 2001.
[22]Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning internal representations by error propagation.”, Parallel Distributed Processing (MIT press: Cambridge) , 1986.
[23]Arzi, Y., and Iaroslavitz, L., “Neural network-based adaptive production control system for flexible manufacturing cell under a random environment”, IIE Transactions, 31, 1999, pp.217-230.
[24]Shiue, Y. R., and Guh, R. S., “Learning-based multi-pass adaptive scheduling for a dynamic manufacturing cell environment.”, Robotics and Computer-Integrated Manufacturing, 22, 2006, pp.203-216.
[25]Arzi, Y., and Iaroslavitz, L., “Operating an FMC by a decision-tree-based adaptive production control system.”, International Journal of Production Research, 38, 2000, pp.675-697.
[26]Quinlan, J. R., “Induction of decision trees,” Machine Learning, 1, 1986, pp.81-106.
[27]Quinlan, J. R., “C4.5: Programs for Machine Learning” (San Manteo: Morgan Kaufmann), 1993.
[28]Lee, C. Y., Piramuthu, S., and Tsai, Y. K., “Job shop scheduling with a genetic algorithm and machine learning.”, International Journal of Production Research, 35, 1997, pp.1171-1191.
[29]Kim, C. O., Min, H. S., and Yih, Y., “Integration of inductive learning and neural networks for multi-objective FMS scheduling.”, International Journal of Production Research, 36, 1998, pp.2497-2509.
[30]Liu, H., and Motoda, H., “Feature Selection for Knowledge Discovery and Data Mining”, (Boston: Kluwer Academic Publishers), 1998.
[31]Guajardo, J., Miranda, J., and Weber, R., “A Hybrid Forecasting Methodology using Feature Selection and Support Vector Regression.”, The Fifth International Conference on Hybrid Intelligent Systems, Rio de Janeiro, Brazil, 2005, pp.341-346.
[32]Blum, A.L., and Langley, P., “Selection of relevant features and examples in machine learning.”, Artificial Intelligence, 1997, pp.245-271.
[33]Liu, H., and Setiono R., “A Probabilistic Approach to Feature Selection – A FilterSolution”, 13th International Conf. on Machine Learning (ICML ’96), 1996 ,pp.319-327.
[34]Brassard, G., and Bratley, P., “Fundamentals of Algorithmics”, 1995, pp.353-366.
[35]Shen, W., Norrie, D. H., and Barthes, J. P. A., “Multi-Agent systems for concurrent intelligent design and manufacturing“(Taylor & Francis: London) , 2000.
[36]Wooldridge, M. J. and Jennings, N. R. “Intelligent agents: Theory and practice”, Knowledge Engineering Review, vol. 10, no. 2, 1995, pp.115-152.
[37]Sutton, R. S., and Barto, G. B., “Reinforcement Learning: An Introduction.”, (MIT Press: Cambridge), 1998.
[38]Watkins C. J. C. H., and Dayan P., “Technical note: Q learning”, Machine Learning, vol. 8, no. 3, 1992, pp. 279-292.
[39]Wang, Y. C., and John M., “Application of reinforcement learning for agent-based production scheduling.” Engineering Applications of Artificial Intelligence, 18, 2005, pp.73-82.
[40]Wang, Y. C., and John M., “Learning policies for single machine job dispatching.” Robotics and Computer-Integrated Manufacturing, 20, 2004, pp.553-562.
[41]Vesanto, J., and Alhoniemi, E., “Clustering of the Self-organizing map.”, IEEE Transactions on Neural Networks, 11(3) , 2000, pp.586-600.
[42]Davies, F. D., and Bouldin, D. W., “A cluster separation measure.”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 1979, pp.224–227.
[43]Hsu, C. C., “Generalizing self-organizing map for categorical data.”, IEEE Transactions on Neural Networks, Vol. 17, No. 2, 2006, pp. 194-204
[44]Wu, S. D., and Wysk, R. A., “An application of discrete-event simulation to on-line control and scheduling in flexible manufacturing.”, International Journal of Production Research, 27, 1989, pp.1603-1623.
[45]Lu, S. C. H., Ramaswamy, D., and Kumer, P. R., “Efficient scheduling policies to reduce mean and variance of cycle-time in semiconductor manufacturing plants.”, IEEE Transactions on semiconductor manufacturing, 7, 1994, pp.374-388.
[46]Hsieh, B. W., Chen, C. H., and Chang, S. C., “Scheduling semiconductor wafer fabrication by using ordinal optimization-based simulation.”, IEEE Transactions on Robotics and Automation, 17, 2001, pp.599-608.
[47]Montazeri, M. and Wassenhove, L. N. Van, “Analysis of scheduling rules for an FMS.”, International Journal of Production Research, 28, 1990, pp.785-802.
[48]eM-Plant, “Objects Manual Version and Reference Manual 7.0 “(Tecnomatix Technologies: Stuttgart) , 2003.
[49]Chen, C. C., Yih, Y., and Wu, Y. C., “Auto-bias selection for learning-based scheduling systems”, International Journal of Production Research, 37,1999, pp.1987-2002.
[50]Su C.-T. and Shiue Y. R., “Intelligent scheduling controller for shop floor control systems: a hybrid genetic algorithm/decision tree learning approach”, International Journal of Production Research, Vol. 41, No.12, 2003, pp2619-2641.
[51]Shiue Y. R., “Data-mining-based dynamic dispatching rule selection mechanism for shop floor control systems using a support vector machine approach”, International Journal of Production Research, Vol. 41, No.12, 2008, pp1-22.