(44.192.112.123) 您好!臺灣時間:2021/03/01 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林奏宏
研究生(外文):TZOU-HUNG LIN
論文名稱:微線切割放電加工之適應性控制
論文名稱(外文):Adaptive Control of Micro Wire-EDM
指導教授:顏木田
指導教授(外文):Mu-Tian Yan
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程學系博碩專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:98
中文關鍵詞:微線切割放電加工波形鑑別適應控制模糊邏輯控制
外文關鍵詞:Micro wire-EDMProcess monitoringAdaptive controlFuzzy control strategy
相關次數:
  • 被引用被引用:5
  • 點閱點閱:463
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:1
本論文之目的在探討微線切割式放電加工適應控制之研究。文中先利用本實驗室所發展出微線切割放電加工之放電波形鑑別系統,分類放電波形及探討各種加工參數之放電波列行為。量測參數與金屬去除率之關係曲線,歸納出放電頻率與短路放電比例等資訊,可做為監視和評估間隙放電狀況之狀態變數與系統控制變數以提供控制應用所需的放電狀態資訊。本文提出以自組織自我學習式模糊滑動控制器之控制策略,應用於間隙電壓控制迴路與PI控制器之實驗結果比較,證明不論穩態進給變動量及加工速率均獲得改善,而適應性控制方面則利用模糊控制器以短路波百分比調整伺服參考電壓,並利用放電波形鑑別系統所分類出不正常放電波,透過CPLD控制脈波時序即時調整放電休止時間。使整個系統能即時反應加工狀況,維持良好加工穩定性。在適應控制實驗方面包括靠邊加工、錐度加工與隅角等加工條件,與一般PI控制器之實驗結果比較,加工狀況方面靠邊加工部份能大幅改善線與工件剛接觸之情形,錐度加工部份可以克服加工不穩定之情形,隅角加工部份可抑制轉角時斷線之危機,加工性能方面暫態響應部份可從原本50秒提升至30秒左右達到穩態,穩態進給變動量從±0.006 mm/min改善至±0.002 mm/min,加工速率從0.08 mm/min可提升至0.11 mm/min。
This paper presents an adaptive control system for process monitoring and control in micro wire-EDM. By means of the developed pulse discriminating system, the effect of table feedrate on the variations of the proportion of normal spark, arc discharge and short circuit in the total sparks (defined as normal ratio, arc ratio and short ratio, respectively) were investigated experimentally. The developed system is performed in hierarchical structure of two control loops by using fuzzy control strategy. In the first control loop, a fuzzy sliding mode controller with self-organizing learning algorithm is implemented for gap voltage control. In the second control loop, the short ratio is regulated at a predetermined level by using fuzzy control strategy for optimal process control. Pulse interval of each spark is real-time adjusted according to the identified gap states to achieve stable machining. Experimental results indicate that the developed control system can reduce the possibility of wire rupture maintain stable machining under the machining conditions where the instability of machining operation and wire rupture are prone to occur. Machine federate was improved from 0.08 mm/min to 0.11 mm/min and its variation was reduced from ±0.006 mm/min to ±0.002 mm/min compared to the commonly used gap voltage control system.
目錄
摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅲ
表錄 Ⅶ
圖錄 Ⅷ
第1章 緒論 1
1.1 引言 1
1.2 文獻回顧 3
1.2.1 放電波形分類相關文獻3
1.2.2 放電波列行為分析相關文獻4
1.2.3 放電加工控制應用相關文獻5
1.2.4 模糊邏輯控制應用於放電加工相關文獻6
1.3 研究動機與目的 9
1.4 本文結構 10
第2章 放電加工技術 11
2.1 放電加工原理 11
2.1.1 放電現象說明 11
2.1.2 放電的基本轉換過程 12
2.1.3 放電火花之結構13
2.2 放電電源系統 16
2.2.1 依放電迴路分類 17
2.2.2 依放電能量分類 18
2.2.3 線切割放電加工機之電源系統 19
2.3 線切割放電加工特性 21
2.3.1 加工速度 21
2.3.2 加工精度 22
2.4 加工參數變化的影響 23
第3章 放電波形監視與脈波控制 28
3.1 放電波形量測電路 28
3.2 放電波形鑑別電路 31
3.2.1 放電波形鑑別策略 32
3.2.2 放電波形鑑別電路與程式之設計 34
3.3 放電條件控制電路 36
3.3.1 放電休止時間控制訊號之設計 36
3.3.2 放電休止時間控制訊號之實現與驗證 36
3.4 完整系統整合之實現 39
第4章 相關控制理論與控制器設計 41
4.1 放電加工適應性控制系統 41
4.2 模糊邏輯控制器 44
4.2.1 模糊控制器之建立方法與步驟 44
4.2.2 模糊化 44
4.2.3 模糊規則庫 45
4.2.4 模糊推論機構 45
4.2.5 解模糊化介面之建立 45
4.3 滑動模式控制器 46
4.4 自組織模糊滑動模式控制器 48
4.4.1 自組織學習法則 48
4.4.2 自組織模糊滑動模式控制器設計 50
4.5 控制器參數 53
第5章 實驗設備與實驗規劃 56
5.1 實驗設備 56
5.2 實驗規劃 68
5.2.1 放電加工條件對放電波列變化之探討 68
5.2.2 微放電伺服進給控制實驗 68
第6章 實驗結果與分析 69
6.1 加工速度對放電波列之影響 69
6.2 伺服進給加工實驗 72
6.2.1 使用PI控制法則 72
6.2.2 使用自組織模糊滑動模式控制法則 73
6.2.3 控制性能分析與討論 75
6.3 適應性控制加工實驗 75
6.3.1 靠邊加工 76
6.3.2 錐度加工 81
6.3.3 隅角加工 85
6.4 實驗結果比較及討論 90
第7章 結論與建議 92
參考文獻 94
參考文獻
[1]R. Snoeys and H. Cornelissen, “Correlation Between Electro Discharge Machining Data and Machining Settings”, Annals of the CIRP, Vol. 24/1, 1975, pp. 83-88.
[2]C. Cogun, “Computer Aided Evaluation and Control of Electric Discharge Machining by Using Properties of Voltage Pulse Trains”, International Journal of Machine Tools and Manufacture, Vol. 30, No. 1, 1990, pp. 237-247.
[3]D. F. Dauw, R. Snoeys and W. Dekeyser, “Advanced Pulse Discriminating System for EDM Process Analysis and Control”, Annals of the CIRP, Vol. 32/2, 1983, pp. 541-549.
[4]K. P. Rajurkar and W. M. Wang, “A New Model Reference Adaptive Control of EDM”, Annals of the CIRP, Vol. 38/1, 1989, pp. 183-186.
[5]J. Y. Kao and Y. S. Tarng, “A Neutral-Network Approach for the On-Line Monitoring of the Electrical Discharge Machining Process”, Journal of Materials Processing Technology, Vol. 69, published by Elsevier Science S. A. , 1997, pp. 112-119.
[6]Y. S. Liao and J. C. Woo, “The Effects of Machining Settings on the behavior of pulse trains in the WEDM process”, Journal of Materials Processing Technology, 1997, pp. 433-439.
[7]Muslim Mahardika, Kimiyuki Mitsui “A new method for monitoring micro-electric discharge machining processes”, International Journal of Machine Tools and Manufacture, Vol. 48, 2008, pp. 446-458.
[8]Mu-Tian Yan and Hsing-Tsung Chien “Monitoring and control of the micro wire-EDM process”, International Journal of Machine Tools and Manufacture, Vol. 47, 2007, pp. 148-157.
[9]A. Gangadhar, M. S. Shunmugam and P. K. Philip, “Pulde Train Studies in EDM with Controlled Pulse Relaxation”, International Journal of Machine Tools and Manufacture, Vol. 32, No. 5, 1992, pp. 651-657.
[10]C. Cogun and M. Savsar, “Statistical Modeling of Properties Discharge Pulse in Electric Discharge Machining”, International Journal of Machine Tools and Manufacture, Vol. 30, No. 3, 1990, pp. 467-474.
[11]Jae-Won Jung, Seok-Hoon Ko, Young-Hun Jeong, Byung-Kwon Min, Sang-Jo Lee “Real-time Gap Control for Micro-EDM:Application in a Microfactory”, International Journal of Precision Engineering and Manufacturing Vol. 9, No. 1, 2008, pp. 3-6.
[12] L. Ladicka, “Pulse Analysis and W-EDM Process Identification”, Proceedings of the International Symposium for Electro-Machining (ISEM-10), 1992, pp. 320-331.
[13] R. Snoeys, D. F. Dauw and J. P. Kruth, “Survey of EDM Adaptive Control in Electro Discharge Machining”, Journal of Manufacturing System,Vol. 2, No. 2, 1983, pp. 147-164.
[14] Y. Zhang, “The Research on the GA-Based Neuro-predictive control strategy for electric discharge machining process”, Proceedings of the ThirdInternational Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004.
[15]C. Fenggou and Y. Dayong, “The Study of High Efficiency and Intelligent Optimization System in EDM Sinking Process”, Journal of Materials Processing Technology, Vol. 149, No. 1-3, 2004, pp. 83-87.
[16]J. Ginzel, A. Behrens and J. P. Wulfsberg, “Technology Development for EDM Using Statistical Analysis of Arcing Information”, Journal of Materials Processing Technology, Vol. 149, No. 1-3, 2004, pp. 232-237.
[17]A. Moria, Y. Iami, A. Noda, H. Maruyma and K. Kobayashi, “Fuzzy Controller for EDM”, Proceeding of 9th International symposium for Electro-Maching, ISEM-9, 1989, pp. 236-239.
[18]T. Kaneko and T. Onodera, “Improvement in Machining Performance of Die-sinking EDM by Using Self-adjusting Fuzzy Control”, Journal of Materials Processing Technology, Vol. 149, No. 1-3, 2004, pp. 204-211.
[19]M. Boccadoro and D.F. Dauw, “ About the Application of Fuzzy Controllers in High-Performance Die-Sinking EDM machines”, Proceeding of 11th International Symposium for Electromachining (ISEM-11), 1995, pp. 333-341.
[20] Z. Yun, W. X. Lin, “Neuro-Fuzzy Network Control Strategy for Electric Discharge Machining Process”, Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics Singapore , 1-3 December, 2004.
[21]Y. Xiong, S. Oi and S. Mao, “Fuzzy Pattern Recognition and Fuzzy Control in EDM”, Proceeding of 9th International Symposium for Electromachining (ISEM-9), 1989, pp. 357-360.
[22]M. T. Yan and Y. S. Liao, “Adaptive Control of WEDM Process Using the Fuzzy Control Strategy”, Journal of Manufacturing System, Vol. 17, No. 4, 1998, pp. 263-274.
[23]Y. S. Liao, J. C. Woo, “Deign of a fuzzy controller for the adaptive control of WEDM process”, International Journal Machine Tools and Manufacture Vol. 40, 2000, pp. 2293-2307.
[24]Fuzhu Han, Shinya Wachi and Masanori Kunieda, “Improvement of Machining Characteristics of Micro-EDM Using Transistor Type Isopulse Generator and Servo Feed Control”, Precision Engineering, Vol. 28, No. 4, 2004, pp. 378-385.
[25]Yu-Sheng Lu and Jian-Shiang Chen, “A Self-Organizing Fuzzy Sliding-Mode Controller for a Class of Nonlinear Servo System”, IEEE Transactions on Industrial Electronics, Vol. 41,No. 5, October 1994.
[26] Shiuh-Jer Huang and Ji-Shin Lee, “a Stable Self-Organizing Fuzzy Controller for Robotic Motion Control”, IEEE Transactions on Industrial Electronics, Vol. 47, No. 2, pp. 421-428, April 2000.
[27] Shiuh-Jer Huang and Kuo-See Huang, “An Adaptive Fuzzy Sliding-Mode Controller for Servomechanism Disturbance Rejection”, IEEE Transactions on Industrial Electronics, Vol. 48, No. 4, August 2001.
[28] S. Jee, Y. Koren, “Adaptive Fuzzy Logic Controller for Feed Drives of a CNC Machine Tool”, Mechatronics, Vol. 14, Issue 3, pp. 299-326, April 2004.
[29]林楠盛,放電加工技術之應用理論與實務,機械工業雜誌,民國八十年十月,pp.257-274。
[30]蘇茂鴻,放電原理和應用,機械工業雜誌,民國七十七年三月,pp.143-150。
[31]林東漢,放電加工中的放電形態,機械技術,民國七十七年九月,pp.42-43。
[32]張渭川,放電加工的結構與實用技術,全華科技圖書公司,台北,民國七十九年。
[33] 顏木田, 簡興宗, 廖運炫,中華民國專利,公告證號I298028。
[34]U. Itkis, “Control System of Variable Structure”, New York: John Wieley, 1976.
[35]V. I. Utkin, “Sliding Modes and Their Application in Variable Structure System”, Moscow: MIR publishers, 1978.
[36]T. J. Procky and E. H. Mamdani, “A Linguistic Self-Organizing Process Controller”, Automatic, Vol. 15, pp. 15-30, 1979.
[37], C. C. Lee, “A Self-Organizing Rule-Based Controller Employing Approximate Reasonging and Neural Net Concept”, International Journal of Intelligent System , pp. 71-93, 1991.
[38]楊清任,即時語意式自組織模糊控制器之設計,台灣大學碩士論文,民國91年6月.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔