(3.238.186.43) 您好!臺灣時間:2021/02/28 11:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許博群
研究生(外文):Bor-Hung Sheu
論文名稱:操作參數與負載模式對質子交換膜燃料電池動態性能的影響
論文名稱(外文):Effects of operating parameters and loading mode on dynamic cell performance of PEM fuel cell
指導教授:顏維謀顏維謀引用關係
指導教授(外文):Wei-Mon Yan
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程學系博碩專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:96
中文關鍵詞:操作參數動態負載電池性能動態響應
外文關鍵詞:Operating parameterdynamic loadingcell performancedynamic response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池取代石油成為能源已成趨勢,在車輛運轉時,車輛負載隨道路車況的變化而改變,因此將燃料電池運用於車輛時,電池性能動態響應為評估不同負載重要的指標之一;此外,電池操作參數亦會影響燃料電池性能之動態特性。本研究所探討的負載模式有車輛耗能及道路行駛兩種,兩者主要差異在於有無考慮室外環境。本研究的重點,在於探討不同動態負載形式中,電池溫度、氣體燃料流量、入口加濕溫度及低溫環境對電池性能的動態響應之影響,此結果對車用型燃料電池之設計,有重要之參考。
在車輛耗能的動態負載研究中,實驗結果指出,在不同電池溫度45℃、55℃及65℃時,65℃的電池性能最佳,此此乃因65℃的電池溫度有較強的電化學反應所致,惟動態響應差異甚微,此乃肇因研究之燃料電池為一個5×5㎝2的小型單電池,其動態反應較快,故較無性能延遲產生。在不同加濕溫度時, Ta/Tc=70℃/60℃加濕條件的性能最好,其乃因加濕溫度可潤濕電池內部,進而提昇電池性能;而加濕溫度對電池性能動態響應之影響,研究結果顯示,加濕溫度對電池動態性能影響較不明顯。雖過去研究指出較高的化學計量數會有較佳的電池性能,但本研究之實驗數據指出λa/λc=1.5/2.0的電池性能較λa/λc=1.0/1.0及3.0/3.0為佳,因為過高流量容易造成內部水氾濫現象,使電池性能下降;在動態響應部份,看到唯有在高負載時,性能響應較為明顯。在車輛耗能部份,負載模式一受其他相關參數影響甚微;在道路行駛部份,負載模式五亦不易受到外在參數影響;此兩種模式對不同道路有較一致結果,有利於評估車輛耗能情形。
It is the trend of the fuel cell to replace the oil in the near future. On the driving condition of the vehicles, the loading of the vehicle changes with the road conditions. When fuel cells are applied to the vehicles, the dynamic response of fuel cell under different dynamic loadings is one of the important indicators. In addition, the operating conditions would affect the dynamic performance of fuel cell. These motivate the present study. In this work, the loading modes contain the energy-consuming mode and the road-traffic mode. The focus is to examine the variations of the dynamic characteristics of the fuel cell under different loading modes. Additionally, the effects of operating conditions (including cell temperature, flow rate, humidification temperature) on the dynamic response and the cell performance under different loading modes are examined in details. The experimental results are valuable for the design of the fuel cell under dynamic loading.
For the study of the energy-consuming mode, the measured results pointed out that best cell performance is noted for the cell temperature of condition of 65℃among three cell temperature tests (45℃, 55℃ and 65℃). This is because that the fuel cell maintained at a higher cell temperature (65℃) experiences a stronger electrochemical reaction. But, the effects of the cell temperature on the dynamic response are insignificant. This can be made plausible by noting the fact that in this work, the unit PEM fuel cell of small size (5×5cm2) is tested. For the effects of humidification temperature, the experimental data indicate that the fuel cell under the operating conditions with anode/cathode humidification temperature Ta/Tc= 70℃/60℃ has a best cell performance. Similarly, the effects of the humidification temperature on the dynamic response of the PEM fuel cell are negligible. Although the previous studies showed a better cell performance for the case with a higher anode/cathode stoichiometric ratio (λa/λc), but the present results disclose that the condition of λa/λc = 1.5/2.0 experiences a better cell performance than that of λa/λc = 1.0/1.0 or 3.0/3.0. For the dynamic cell performance, it is found from the measured data that the operating conditions and dynamic modes have a more significant impact on the dynamic cell performance for the higher loading conditions. For the lower loading, the effect is less significant.
目錄
誌謝 I
摘要 II
ABSTRACT III
目錄 V
表錄 VIII
圖錄 IX
符號說明 XII
第一章 前言 1
1.1動機與目的 1
1.2文獻回顧 2
1.2.1操作溫度效應 3
1.2.2入口加濕效應 4
1.2.3低溫效應 7
1.2.4流量效應 9
1.2.5負載效應. 12
1.2.6動態效應 13
第二章 實驗設備與方法 17
2.1電池構造與規格 17
2.1.1膜電極組(Membrane) 17
2.1.2氣體擴散層(Gas Diffusion Layer) 18
2.1.3雙極板(Bipolar Plate) 18
2.1.4氣密墊片(Gasket) 19
2.1.5集電板(Collector Plate) 20
2.1.6端板(End Plate) 20
2.2電池組裝流程 21
2.3量測設備 22
2.3.1氣體供應系統 22
2.3.2流量控制系統 23
2.3.3溫度控制系統 23
2.3.4增濕系統 24
2.3.5電子負戴系統 24
2.3.6電腦作業系統 25
2.4實驗方法 25
2.4.1實驗步驟 25
2.4.2關機程式 27
第三章負載型態簡介 39
3.1 汽車之貢獻及公害 39
3.2 廢氣管制發展之歷史 39
3.3 歐洲耗能測試行車型態 40
3.4日本耗能測試行車型態 41
3.5 負載型態 41
3.5.1車輛耗能負載模式 42
3.5.2道路行駛負載模式 43
第四章 結果與討論 54
4.1 操作參數效應對燃料電池性能之影響 55
4.1.1 電池溫度效應對燃料電池動態性能之影響 55
4.1.2 燃料入口加濕溫度效應對燃料電池動態性能之影響 57
4.1.3 化學計量數對燃料電池動態性能之影響 59
4.1.4 低溫環境對燃料電池動態性能之影響 61
4.2 車輛耗能模式對燃料電池輸出動態性能之影響 62
4.2.1 電池溫度在車輛耗能模式下對電池的動態響應 63
4.2.2 化學計量數在車輛耗能模式下對電池的動態響應 64
4.3 道路行駛模式對燃料電池輸出動態性能之影響 66
4.3.1 電池溫度在道路行駛模式下對電池的動態影響 66
4.3.2 化學計量數在道路行駛模式下對電池的動態影響 67
第五章 結論與建議 91
參考文獻 94


表錄
表4-1 在車輛耗能負載模式ㄧ時,不同參數效應之實驗操作條件 69
表4-2 在車輛耗能負載型態時,不同參數效應的實驗操作條件 70
表4-3 在道路行駛負載型態時,不同參數效應的實驗操作條件 71


圖錄
圖2-1 質子交換膜燃料電池示意圖。(a)組合圖;(b)零件圖 28
圖2-3 雙極板流場示意圖 30
圖2-4質子交換膜燃料電池組裝流程圖 31
圖2-5燃料電池測試機台實體圖 32
圖2-7車輛耗能模式一,正規化前電池電壓動態響應與輸入電壓之差異 34
圖2-8車輛耗能模式一時,正規化後的電池電壓動態響應與輸入電壓之差異 35
圖2-9車輛耗能模式二時,正規化後的電池電壓動態響應與輸入電壓之差異 36
圖2-10車輛耗能模式三時,正規化後的電池電壓動態響應與輸入電壓之差異 37
圖2-11 燃料電池測試機台控制介面圖 38
圖3-3車輛耗能測試模式之負載型態一(仿歐洲行車型態) 47
圖3-4 車輛耗能測試模式之負載型態二(仿日本行車型態) 48
圖3-5 車輛耗能測試模式之負載型態三(改良行車型態) 49
圖3-6 道路行駛測試模式參考路面圖 50
圖3-7道路行駛測試模式之負載型態四(參考圖3-6-a) 51
圖3-8道路行駛測試模式之負載型態五(參考圖3-6-b) 52
圖4-1電池溫度對燃料電池穩態性能之影響 72
圖4-2電池溫度對燃料電池性能動態響應之影響 73
圖4-3加濕溫度對燃料電池穩態性能之影響 74
圖4-4加濕溫度對燃料電池性能動態響應之影響 75
圖4-5化學計量數對燃料電池穩態性能之影響 76
圖4-6化學計量數對燃料電池性能動態響應之影響 77
圖4-7低電池溫度時(Tcell=45℃),加濕溫度對電池性能動態響應之影響 78
圖4-8在低電池溫度時,化學計量數對電池穩態性能之影響 79
圖4-9在低電池溫度時,化學計量數對電池性能動態響應之影響 80
圖4-10車輛耗能模式對電池輸出電壓及電流密度響應之影響。(a)電壓動態響應;(b)電流密度動態響應 81
圖4-11在低電池溫度時,車輛耗能模式對電池輸出電壓及電流密度響應之影響。(a)電壓動態響應;(b)電流密度動態響應 82
圖4-12在低化學計量數時,車輛耗能模式對電池輸出電壓及電流密度響應之影響。(a)電壓動態響應;(b)電流密度動態響應 83
圖4-13在高化學計量數時,車輛耗能模式對電池輸出電壓及電流密度響應之影響。(a)電壓動態響應;(b)電流密度動態響應 84
圖4-14 在道路行駛模式為負載4時,電池溫度對電池性能動態響應之影響 85
圖4-15在道路行駛模式為負載5時,電池溫度對電池性能動態響應之影響 86
圖4-16在道路行駛模式為負載6時,電池溫度對電池性能動態響應之影響 87
圖4-17在道路行駛模式為負載4時,化學計量數對電池性能動態響應之影響 88
圖4-18在道路行駛模式為負載5時,化學計量數對電池性能動態響應之影響 89
圖4-19在道路行駛模式為負載6時,化學計量數對電池性能動態響應之影響 90
Chen, Y.S., Peng, H., Hussey, D.S., Jacobson, D.L., Tran, D.T., Abdel-Baset, T., and Biernacki. M., 2007, “Water distribution measurement for a PEMFC through neutron radiography,” J. Power Sources, Vol. 170, pp. 376-386.
Corbo, P., Migliardini, F., and Veneri, O., 2007, “Performance investigation of 2.4kW PEM fuel cell stack in vehicles,” J. Hydrogen Energy, Vol. 32, pp. 4340-4349.
Corbo, P., Migliardini, F., and Veneri, O., 2008, “An experimental study of a PEM fuel cell power train for urban bus application,” J. Power Sources, Vol. 181, pp. 363-370.
Ghosh, P.C., Wuster, T., Dohle, H., Kimiaie, N., Mergel, J., and Stolten, D., 2006, “In situ approach for current distribution measurement in fuel cells,” J. Power Sources, Vol. 154, pp. 184-191.
Mitchell, W., Bowers, B.J., Garnier, C., and Boudjemaa, F., 2006, “Dynamic behavior of gasoline fuel cell electric vehicles,” J. Power Sources, Vol. 154, pp. 489-496.
Nishikawa, H., Kurihara, R., Sukemori, S., Sugawara, T., Kobayasi, H., Abe, S., Aoki, T., Ogami, Y., and Matsunaga, A., 2006, “Measurements of humidity and current distribution in a PEFC,” J. Power Sources, Vol. 155, pp. 213-218.
Oszcipok, M., Zedda, M., Riemann, D., and Geckeler, D., 2006, “Low temperature operation and influence parameters on the cold start ability of portable PEMFCs,” J. Power Sources, Vol. 154, pp. 404-411.
Oszcipok, M., Zedda, M., Hesselmann, J., Huppmann, M., Wodrich, M., Junghardt, M., and Hebling, C., 2006, “Portable proton exchange membrane fuel-cell systems for outdoor applications,” J. Power Sources, Vol. 157, pp. 666-673.
Philipps, F., Simons, G., and Schiefer, K., 2006, “ Dynamic investigation of PEFC stacks in interaction with the air supply system,” J. Power Sources, Vol. 154, pp. 412-419.
Santarelli, M.G., and Torchio, M.F., 2007, “Experimental analysis of the effects of the operating variables on the performance of a single PEMFC,” Energy Conversion and Management, Vol. 48, pp. 40-51.
Sun, H., Zhang G., Guo, L.J., and Liu H., 2006, “A novel technique for measuring current distributions in PEM fuel cells,” J. Power Sources, Vol. 158, pp. 326-332.
Sun, H., Zhang, Guo, L.J., Dehua, S., and Liu, H., 2007, “Effects of humidification temperatures on local current characteristics in a PEM fuel cell,” J. Power Sources, Vol. 168, pp. 400-407.
Shimpalee, S., Lee, W.-K., Van Zee, J.W., and Naseri-Neshat, H., 2006, “Predicting the transient response of a serpentine flow-field PEMFC II: Normal to minimal fuel and AIR,” J. Power Sources, Vol. 156, pp. 369-374.
Hottinen, T., Himanen, O., and Lund, P., 2006, “Performance of planar free-breathing PEMFC at temperatures below freezing,” J. Power Sources, Vol. 154, pp. 86-94.
Yan, Q., Toghiani, H., and Causey, H., 2006a, “Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes,” J. Power Sources, Vol. 161, pp. 492-502.
Yan, Q., Toghiani, H., Lee, Y.W., Liang, K.W., and Causey, H., 2006b, “Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components,” J. Power Sources, Vol. 160, pp. 1242-1250.
Yan, X., Hou, M., Sun, L., Cheng, H., Hong, Y., Liang, D., Shen, Q., Ming P., and Yi, B., 2007, “The study on transient characteristic of proton exchange membrane fuel cell stack during dynamic loading,” J. Power Sources, Vol. 163, pp. 966-970.
黃靖雄, 1995, “現代低公害省油汽車排氣污染控制技術及裝置,” 全華科技圖書股份有限公司, 台北.
李添財, 1995, “電動汽車與替代燃料汽車,” 全華科技圖書股份有限公司, 台北.
車輛耗能研究網站, http://auto.itri.org.tw/research/system.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔