跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/13 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家綺
研究生(外文):Chia-Chi Chang
論文名稱:台中沿海工業區與交通區大氣微粒及離子污染物之研究
論文名稱(外文):Atmospheric particulate and ionic pollutants at the industrial zone and traffic area around seashore side of Taichung, Taiwan
指導教授:方國權方國權引用關係
指導教授(外文):Guor-Cheng Fang
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:100
中文關鍵詞:細微粒粗微粒水溶性物種統計分析
外文關鍵詞:Fine particlecoarse particleWater-soluble speciesStatistical analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為描述中台灣台中縣交通區及工業區空氣中的懸浮微粒及化學物種(Cl - , NO2-, NO3-, SO42-, Na+, NH4+, K+, Mg2+ 及 Ca2+)來源探討。採樣時期分為二個時期,第一時期(2006年春天及夏天)於臨近高速公路交通區(弘光科大工常學院頂樓)且分日、夜兩個採樣期間;第二時期(2006年11月 ~ 2007年10月)於台中沿海工業區(食品大樓)且分長期及短期進行採樣,然而於採樣期間所使用空氣採樣設備分別為R&P Model 2300 (RP2300) Partisol Sampler 及多功能固/氣分離採樣器 (VAPS, URG-3000K, URG, Chapel Hill, NC)。之後將採集之樣品進行水溶性離子分析,以了解大氣氣膠之特性影響。
本研究主要結果發現,第一採樣時期,臨近交通區日、夜主要污染物(NO3-, SO42-, NH4+, NO2- 及 Cl-)來源分別是車輛廢氣排放及海洋飛沫所導致,原因為採樣點距離中二高(交通區) 60公尺,距離海岸(台灣海峽) 9公里。第二採樣時期,工業區方面,主要污染物大多人為因素其分別為車輛散發及台中火力發電廠,其次,污染物大多自然因素其分別為海洋飛沫及地殼元素。最後,根據統計相關分析結果顯示,於春天無論臨近交通區或工業區其離子物種濃度都與氣象條件(溫度,相對濕度及風速)有高度相關。
The characterization ambient air particulate mass and chemical species of the central Taiwan, Taichung County from 2006-2007, respectively in this study. The concentrations of the ambient particulate mass were measured at near highway traffic (Site I) and industry zone (Site II) sampling sites. During this sampling period, R&P Model 2300 (RP2300) Partisol Sampler and versatile air pollutant sampler (VAPS, URG-3000K, URG, Chapel Hill, NC) were used to collect the ambient suspended particles concentration. In addition, the samplings collected were analyzed by ion chromatography for the ionic species (Cl -, NO2-, NO3-, SO42-, Na+, NH4+, K+, Mg2+ and Ca2+) analysis. Furthermore, the results exhibit that the vehicle emissions (Taichung II) and marine sprays (sea shore region) were the major sources of day and night at near highway traffic. As for the industry zone sampling site, the results revealed that the vehicle emissions (traffic) and Taichung power plant were the major sources. And the sources of secondary polluted ionic species were caused by sea salt aerosols and crustal element at industry zone. Finally, statistics analysis results revealed the ionic species concentration for PM2.5 and PM10 were related to meteorological conditions (temperature, relative humidity and wind speed) during spring for both sampling sites (near highway traffic and industrial zones).
Acknowledgements
Abstract
Abbreviation
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Particle Matter 4
2.2 Sources of ionic species 6
2.3 Objectives of this study 9
Chapter 3 Experimental and Methods 10
3.1 Sampling site 11
3.2 Sampling device 12
3.2.1 Air sampler 12
3.2.2 Portable Weather Station 16
3.2.3 Analytical balance 17
3.3 Mass measurement 18
3.4 Analysis for water-soluble ion species 18
3.5 Quality control 19
3.5.1 Blank test 19
3.5.2 Method detection limit 20
3.5.3 Recovery efficiency test 21
Chapter 4 Results and discussion 22
4.1 Sampling site for near highway traffic 22
4.1.1 Mass concentrations and meteorological conditions of
spring 22
4.1.2 Chemical composition of ambient particle 25
4.1.3 T-test for various ionic species in PM2.5 and PM10 during day and night 28
4.1.4 A non-parametric (Spearman) correlation analysis. 30
4.1.5 Mass concentrations and meteorological conditions of summer. 35
4.1.6 Chemical composition of ambient particle 37
4.1.7 T-test for various ionic species in PM2.5 and PM10 during day and night 40
4.1.8 Pearson correlation analysis of ionic species and meteorological conditions 42
4.2 Site II Long-term sampling for near industrial zones 46
4.2.1 Sampling information of particulate mass from November 27, 2006 to October 3, 2007 46
4.2.2 Meteorological conditions for sampling site 46
4.2.3 Chemical composition of ambient particle 49
4.2.4 Correlation analysis of ionic species for ambient particle 52
4.3 Site II Short-term sampling for near industrial zones 54
4.3.1 Sampling information of particulate mass from November 27 of 2006 to March 12 of 2007 54
4.3.2 Chemical composition of ambient particle 56
4.3.3 Ambient airborne particle principal component analysis of ionic species 59
4.3.4 Sampling of particulate concentrations and meteorological conditions during A.M and P.M at near industry zoon from April 28 to October 3, 2007 62
4.3.5 Chemical composition of ambient particle 64
4.4 Comparison of near highway traffic and industrial zones 68
4.4.1 Mass concentrations and meteorological conditions 68
4.4.2 Chemical composition of ambient particle 71
4.4.3 T-test for various ionic species during the spring and summer in PM2.5 and PM10 78
4.4.4 Pearson correlation analysis 82
Chapter 5 Conclusions 91
Chapter 6 Reference 95
Alfred W. and Hansson H. C., 1995. Formation of ammonium chloride particles from hydrogen chloride and ammonia in the atmosphere. J. Aerosol Sci. 26, 463-464.

Alvesm, C.A., Pio, C.A., Duarte, A.C, 2000. Particle size distributed organic compounds in a forest atmosphere. Environ. Sci. Technol. 25, 2133-2140.

Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A., 2005. Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment 39, 3127–3138.

Braunfahrlander, C., Ackermannliebrich, U., Schwartz, J., Gnehm, H.P., Rutishauser, M., Wanner, H.U., 1992. Air-pollution and respiratory symptoms in preschoolchildren. American Review of Respiratory Disease 145, 42–47.

Berico, M., Luciani, A., Formignani, M., 1997. Atmospheric aerosol in an urban area-measurements of TSP and PM10 standards and pulmonary deposition assessments. Atmospheric Environment 31, 3659–3665.

Baker, J.E., Poster, D.L., Clark, C.A., Church, T.M., Scudlark, J.R., Ondov, J.M., Dickhut, R.M., Cutter, G., 1997. Loading of atmospheric trace elements and organic contaminants to the Chesapeake Bay., Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. SETAC Press, Pensacola, Florida, 171-194.

Chan, T.L., Lippmann, M., 1980. Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans. American Industrial Hygiene Association Journal 41, 399–408.

Charlson, R.J., Lovelock, J.E., Andreae, M.O., Warren, S.G., 1987. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655–661.

Chan, L.Y., Kwok, W.S. 2000. Vertical dispersion of suspended particulates in urban area of Hong Kong. Atmospheric Environment 34, 4403-4412.

Chio, C.P., Cheng, M.T., Wang, C.F., 2004. Source apportionment to PM10 in different air quality conditions for Taichung urban and costal areas, Taiwan. Atmospheric Environment 38, 6893–6905.

Dockery, D.W., Pope, C.A., 1994. Acute respiratory effects of particulate air-pollution. Annual Review of Public Health 15, 107–132.

Eisenreich, S.J., Hornbuckle, K.C., Achman, D.R., 1997. Air–water exchange of semivolatile organic chemicals in the Great Lakes. In Baker JE (Ed.); Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. SETAC Press, Pensacola, FL, 109-136.

El−Fadel M., Massoud M., 2000. Particulate matter in urban areas: health−based conomic assessment, Journal of the science of the total environment 257, 33−146.

Facchini, M.C., Mircea, M., Fuzzi, S., Charlson, R.J., 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401, 257–259.

Fang, G.C., Chang, C.N., Wu, Y.S., Cheng, Fu.P.P., Yang, C.J., Chen, C.D., Chang, S.C., 2002. Ambient suspended particulate matters and related chemical species study in central Taiwan, Taichung during 1998–2001. Atmospheric Environment 36, 1921-1928.

Fung, J.C.H., Lau, A.K.H., Lam, J.S.L., Yuan, Z., 2005. Observational and modeling analysis of a severe air pollution episode in western Hong Kong. Journal of Geophysical Research 110, D09105. doi:10.1029/2004JD005105.

Fang, G.C., Wu,Y.S., Rau, J.Y., Huang, S.H., 2006. Traffic aerosols (18 nmQparticle sizeQ18 Am) source apportionment during the winter period. Atmospheric Research 80, 294– 308.

Fang, G.C., Wu, Y.S., Lee, W.J., Chou,T.Y., Lin, I.C., 2007. Ambient air particulates, metallic elements, dry deposition and concentrations at Taichung Airport, Taiwan. Atmospheric Research 84, 280–289.

Gao, Y., Arimoto, R., Zhou, M.Y., Lee, D.S., Duce, R.A., 1992. Input of atmospheric trace-elements and mineral matter to the Yellow Sea during the spring of low dust year. Journal of Geophysical Research-Atmosphere 97, 3767-3777.

Hileman, B., 1981. Particulate matter: the inevitable variety. Environmental Science and Technology 15, 983-986.

Horvath, H., 1996. Black smoke as a surrogate for PM10 in health studies. Atmospheric Environment 30, 2649–2650.

Horvath, H., Catalan, L., Trier, A., 1997. A study of the aerosol of Santiago de Chile III: Light absorption measurements. Atmospheric Environment 31, 3737–3744.

Holsen, T.M., Zhu, X., Khalili, N.R., Lin, J.J., Lestari, P., Lu, C.S., Noll, K.E., 1997. Atmospheric particle size distributions and dry deposition measured around Lake Michigan., Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. SETA Press, Pensacola, Florida, 35-50.

Horvath, L., 2003. Dry deposition velocity of PM2.5 ammonium sulfate particles to a Norway spruce forest on the basis of Sand N-balance estimations. Atmospheric Environment 37, 4419–4424.

Harrison, R.M., Shi, J.P., Jones, M.R., 1999. Continuous measurements of aerosol physical properties in the urban atmosphere, Atmospheric Environment 33 1037–1047.

Koutrakis, P., Sioutas, C., Ferguson, S.T., Wolfson, J.M., Mulik, J.D., 1993. Development and Evaluation of a Glass Honeycomb Denuder/Filter Pack System to Collect Atmospheric Gases and Particles. Environmental Science & Technology 27, 2497-2501.

Kleeman, M.J., Cass, G.R., 2001. A 3D Eulerian source-oriented model for an externally mixed aerosol. Environmental Science and Technology 35, 4834–4848.

Krupa, S.V., 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution 124, 179–221.

Kocifaj, M., Horvath, H., 2005. Inversion of extinction data for irregularly shaped particles. Atmospheric Environment 39, 1481–1495.

Lukac, J., 1994. Trend of solar radiation attenuation by atmospheric aerosols. Atmospheric Environment 28, 961–962.

Lee, J.H., Kim, Y.P., Moon, K.C., Kim, H.K., Lee, C.B., 2001. Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmospheric Environment 35, 635–643.

Lu, H.C., 2002. The statistical characters of PM10 concentration in Taiwan area. Atmospheric Environment 36, 491–502.

Nicholson, K. W., Branson, J. R., Geiss, P. and Cannell, R. J.: 1989, The effects of vehicle activity on particle resuspension, J. Aerosol Sci. 20, 1425-1428.

Nolte, C.G., Schauer, J.J., Cass, G.R., Simoneit, B.R.T., 2002. Trimethylsilyl derivatives of organic compounds in source samples and in atmospheric fine particulate matter. Environment Science and Technology 36, 4273-4281.

Nho-Kim, E.-Y., Michou, M., Peuch, V.-H., 2004. Parameterization of size-dependent particle dry deposition velocities for global modeling. Atmospheric Environment 38, 1933–1942.

Mulawa, P. A., Cadle, S. H., Knapp, K., Zweidinger, R., Snow, R., Lucas, R. and Goldbach, J.: 1997, Effect of ambient temperature and E-10 fuel on primary exhaust particulate matter emissions from light-duty vehicles, Environ. Sci. Technol. 31, 1302-1307.

Moosmuller, H., Gillies, J. A., Rogers, C. F., DuBois, D. W., Chow, J. C., Watson, J. G. and Langston, R., 1998. Particulate emission rates for unpaved shoulders along paved roads, J. Air Waste Manage. Assoc. 48, 174-185.

Mysliwiec, M.J., Kleeman, M.J., 2002. Source apportionment of secondary airborne particulate matter in a polluted atmosphere. Environ. Sci. Technol. 36, 5376–5384.

Ondov, J.M., Quinn, T.L., Battel, G.F., 1997. Influence of temporal changes in relative humidity on size and dry depositional fluxes of aerosol particles bearing trace elements. Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. SETAC Press, Pensacola, florida, 17-34.

Pierson, W. R., Brachaczek W. W., 1983, Particulate matter associated with vehicles on the road, II, Aerosol Sci. Technol. 4, 1-40.

Pope Jr., C.A., Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, F.E., Heath Jr., C.W., 1995. Particulate air pollution as a predictor of mortality in a prospective study of US adults. American Journal of Respiratory and Critical Care Medicine 151, 669–674.

Qin, Y., Oduyemi, K., 2003. Chemical composition of atmospheric aerosol in Dundee, UK. Atmospheric Environment 37, 93–104.

Radzi, B.A.M., Rahman, N.A., Omar, N.Y.M.J., Maah, M.J., Samah, A.A., Oros, D.R., Otto, A., Simoneit, B.R.T., 2004. Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia. Atmospheric Environment 38, 4223-4241.

Sloane, C. S., Watson, J. G., Chow, J. C., Pritchett, L. C., Richards, L. W., 1991. Size-Segregated Fine Particle Measurements by Chemical Species and Their Impact on Visibility Impairment in Denver. Atmospheric Environment 25, 1013-1024.

Schwartz, J., Dockery, D.W., Neas, L.M., 1996. Is daily mortality associated specially with fine particles. J Air Waste Manage Assoc 46, 927-939.

Sagebiel, J. C., Zielinska, B., Walsh, P. A., Chow, J. C., Cadle, S. H., Mulawa, P. A., Knapp, K.T., Zweidinger, R. B. and Snow, R., 1997, PM-10 exhaust samples collected during IM-240 dynamometer tests of in-service vehicles in Nevada, Environ. Sci. Technol. 31, 75-83.

Seinfeld, J.H., Pandis, S.N., 1997. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. John Wiley, New York.

Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. Wiley, New York.

Schauer, J.J., Fraser, M.P., Cass, G.R., Simoneit, B.R.T., 2002. Source reconciliation of atmospheric gas-phase and particlephase pollutants during a severe photochemical smog episode. Environmental Science and Technology 36, 3806–3814.

Schlesinger, R.B., Cassee, F., 2003. Atmospheric secondary inorganic particulate matter: the toxicological perspective as a basis for health effects risk assessment. Inhal. Toxicol. 15, 197–235.

Tsai, Y. I., Cheng, M. T., 1999. Visibility and aerosol chemical compositions near the coastal area in Central Taiwan. The Science of the Total Environment 231, 37-51.

Tsai, Y.I., Lin, Y.H., Lee, S.Z., 2003. Visibility variation with air qualities in the metropolitan area in southern Taiwan. Water, Air and Soil Pollution 144, 19–40.

Tsai Y.I. and Kuo S.C. 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.

Wang, C.C., Lee, C.T., Liu, S.C., Chen, J.P., 2004. Aerosol characterization at Taiwan’s northern tip during Ace-Asia. Terrestrial, Atmospheric and Oceanic Sciences 15, 839–855.

Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999a. Size distributions of articulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843–853.

Zheng, M., Cass, R.G., Schauer, J.J., Edgerton, E.S., 2002. Source apportionment of PM2.5 in the southeastern US using solvent-extractable organic compounds as tracers. Environmental Science and Technology 36, 2361–2371.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊