(3.235.108.188) 您好!臺灣時間:2021/03/07 21:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾培倫
研究生(外文):Pei-Lun Chung
論文名稱:紅龍果萃取物抑制老齡小鼠腦部單胺氧化酶活性及過氧化傷害之研究
論文名稱(外文):The inhibition of Hylocereus polyrhizus extract on the monoamine oxidase enzyme activity and peroxidation injury in aged mice brains.
指導教授:林士民林士民引用關係湯雅理
指導教授(外文):Shyh-Mirn LinYa-Li Tang
學位類別:碩士
校院名稱:中華醫事科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:紅龍果單胺氧化酶大腦
相關次數:
  • 被引用被引用:3
  • 點閱點閱:351
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
紅龍果 (Hylocereus polyrhizus) 的果實呈現鮮紅色,含多量多酚化合物;而多酚化合物被認為具有抗氧化功能,膳食補充對健康具有許多助益。單胺氧化酶 (Monoamine oxidase, MAO) 在人體老化及其他神經相關疾病(如:帕金森氏症、憂鬱症)扮演重要角色。 MAO 活性的增加,經常被認為是老化的指標。 MAO 抑制劑也廣泛被治療包括帕金森氏症在內的多種神經方面的疾病,但往往存在許多副作用。因此本研究擬建立抗老化篩選機制平台,分析紅龍果中具有抑制 MAO 活性的有效成分。實驗設計分為兩個部份,第一部分為細胞實驗,採用大腦神經膠細胞- C6 細胞,作為 MAO 生成的細胞研究模式。結果顯示在不影響細胞存活率之下,紅龍果萃取物的添加,可有效降低大腦神經膠細胞- C6 細胞中 MAO 之活性,並呈現劑量反應。另一部份為動物模式,利用細胞實驗篩選出抑制 MAO 的紅龍果萃取物,進行動物實驗的檢測。採用 BALA/c 雌鼠(八十週大),依體重隨機分成三組: C 組(控制組)及兩組紅龍果萃取物補充組, L 組 (1 g extract/kg diet) 及 H 組 (5 g extract/kg diet),飼養七週後犧牲,測定其腦部、肝臟脂質過氧化程度 (TBARS)、單胺氧化酶及抗氧化酵素 (catalase、SOD及GPx) 活性。結果顯示 H 組老齡小鼠腦中單胺氧化酶活性較控制組低 (p<0.05)。而肝中單胺氧化酶活性則不受飲食處理的影響。 TBARS 的部份, H 組腦部 TBARS 值低於 C 組 (p<0.05),而肝中 TBARS 則不受飲食處理的影響。抗氧化酵素 catalase 的部份, H 組肝臟 catalase 活性高於 C 組 (p<0.05), H 組腦部的 catalase活性,反而明顯較低 (p<0.05)。 SOD 的部份,L、H 組腦部的 SOD 活性高於 C 組 (p<0.05),而肝臟結果看到紅龍果萃取物的添加,可提升老齡小鼠肝中 SOD 活性,但因 SD 較大所以未達統計上的差異。 GPx 的結果顯示肝臟及腦部中 GPx 活性不受飲食處理之影響。實驗結果顯示,高劑量 (5 g extract/kg diet) 紅龍果對老齡小鼠大腦中單胺氧化酶活性有抑制作用,也可降低腦中脂質過氧化程度。本實驗結果可作為預防老化食物選擇之依據。
The polyphenols are contained in colorful fruits, such as Hylocereus polyrhizus. The polyphenols are a group of natural dietary antioxidants, and are useful for health in dietary supplementation. The enzyme monoamine oxidase (MAO) is closely related to neurodegeneration disorders such as Parkinson’s disease, depression, etc. MAO enzyme activity increases during aging in the brain. For the reason, it is regarded as a physiological marker for aging. Moreover, the MAO Inhibitors are often used to treat the neurodegeneration diseases. The major purpose of this research is to build the anti-aging analysis model by MAO enzyme activity evaluation, and the Hylocereus polyrhizus constituents was used in this work. It includes two studies in our research. Firstly, The C6 cell (rat brain neuroglia cell line) was used for MAO enzyme activity assay. The result indicated that Hylocereus polyrhizus extracts demonstrate inhibition capacities on C6 cell MAO activity. The 80 weeks old female BALB/c mice were used as animal model in the following study. Mice were divided into 3 groups: (1) control group (C), (2) Hylocereus polyrhizus extracts low dose supplement group (L) (1g extract/kg diet), (3) Hylocereus polyrhizus extracts high dose supplement group (H) (5g extract/kg diet). The mice were fed the test diets for 7 weeks. These results suggested that MAO activity in brain showed significantly decrease in H group compared with C group. Thiobarbituric acid reactive substances (TBARS) levels were also significantly decreased in H group compared with C group in brain. The catalase activity in liver demonstrated significantly increase in L and H groups compared with C group. However, the catalase activity in brain showed significantly decrease in H group compared with C group. In addition, the SOD activity in brain was significantly increased in L and H groups compared with C group. In conclusion, the inhibition capacity of Hylocereus polyrhizus extracts in MAO enzyme activity has been established by these results of cell culture and animal models. These studies above can provide for the bases of food selections for neurodegenerative prevention.
目錄 i
圖目錄 v
表目錄 vi
誌謝 vii
縮寫對照表 i
中文摘要: ii
Abstract: iv
第一章 緒論 1
第一節 前言 1
第二節 文獻回顧 2
一、單胺氧化酶之介紹 2
1. 單胺氧化酶之作用、分類及分佈 2
2. 腦部老化疾病與單胺氧化酶的相關性 3
3. 單胺氧化酶與老化的相關性 4
4. 單胺氧化酶與氧化壓力 4
5. 單胺氧化酶與神經傳導 5
6. 食物成份對單胺氧化酶之影響 5
二、紅龍果之介紹 6
1. 紅龍果之簡介 6
2. 紅龍果之成分 7
3. 紅龍果之相關研究 7
三、多酚化合物之介紹 7
1. 何謂多酚化合物 8
2. 食物成分中之多酚化合物 8
3. 多酚化合物與神經退化性疾病之相關研究 8
四、抗氧化酵素之簡介 9
1. 超氧化物歧化酶 (Superoxide dismutase, SOD) 9
2. 過氧化氫酶 (Catalase, CAT) 9
3. 麩胱甘肽過氧化酶 (Glutathione peroxidase, GPx) 10
4. 抗氧化酵素與老化之相關研究 11
5. 多酚對抗氧化酵素之影響 11
第三節 研究目的與實驗設計 13
一、研究目的 13
二、實驗設計 14
三、實驗設計說明 15
第二章 利用細胞模式探討紅龍果成分對MAO之影響 16
第一節 前言 16
第二節 材料與方法 16
一、細胞株來源及培養條件 16
二、紅龍果萃取物之製備 17
三、紅龍果萃取物總多酚含量測定 17
四、紅龍果萃取物總類黃酮含量測定 17
五、單胺氧化酶活性之分析 18
六、半數抑制濃度(IC50)之計算 20
七、蛋白質測定 20
八、MAO活性計算及表示 21
九、細胞存活率分析 22
十、統計分析 23
第三節 結果 24
一、紅龍果萃取物總多酚含量 24
二、紅龍果萃取物對C6細胞生長之影響 24
三、紅龍果萃取物對C6細胞MAO之影響 25
第四節 討論 29
一、紅龍果萃取物之可能成分 29
二、紅龍果萃取物對C6細胞生長之影響 29
三、紅龍果萃取物抑制MAO活性的可能原因 30
第三章 利用動物模式探討紅龍果對大腦MAO之影響 32
第一節 前言 32
第二節 材料與方法 32
一、動物飼養 32
二、飼料之製備 33
三、動物犧牲 34
四、血樣收集 34
五、組織均質 35
六、TBARS測定 35
七、ORAC (Oxygen-radical absorbance capacity) 總抗氧化能力測定 36
八、老齡小鼠組織中單胺氧化酶活性之測定 38
九、組織中Catalase活性之測定 39
十、組織中GPx 活性之測定 40
十一、組織中SOD 活性之測定 42
十二、血清中GOT 活性之測定 43
十三、血清中GPT 活性之測定 44
十四、尿液測定 46
第三節 結果 47
一、動物生長及攝食情形 47
二、組織重量 47
三、補充紅龍果萃取物對老齡小鼠腦部及肝臟中單胺氧化酶活性之影響 47
四、補充紅龍果萃取物對老齡小鼠腦部及肝臟中抗氧化酵素活性之影響 48
五、補充紅龍果萃取物對老齡小鼠尿液之影響 48
六、補充紅龍果萃取物對老齡小鼠腦部及肝臟脂質過氧化之影響 49
七、補充紅龍果萃取物對老齡小鼠血清三酸甘油酯、肝功能指標之影響 49
八、補充紅龍果萃取物對老齡小鼠血清中總抗氧化能力之影響 49
九、脂質過氧化程度與單胺氧化酶活性之相關性分析 50
第四節 討論 69
一、紅龍果萃取物對動物生長之影響 69
二、紅龍果萃取物對動物體生化檢驗之影響 69
三、紅龍果萃取物對動物體氧化壓力之影響 70
四、紅龍果萃取物對動物大腦單胺氧化酶活性之影響 71
五、紅龍果萃取物對動物大腦及肝臟中抗氧化酵素活性之影響 72
第五節 結論 73
第四章 總結及未來展望 75
一、總結 75
二、未來展望 76
參考文獻: 77
王詩維,2005。綠茶多酚化合物對大腦單胺氧化酶活性之影響。中華醫事科技大學生物科技研究所碩士論文。
林秀芳、吳淑珍、葉東柏 (1983) 澎湖產仙人掌果肉中天然色素之研究。嘉南學報 9:49-58。
黃喜玲、莊允當、劉曜東 (1992) 仙人掌果實紅色素之特性與穩定性改善之研究。臺灣糖業研究所彙報 138:37-45。
黃福龍,2007。台灣產桂花之安全性、抗致敏性氣喘及護肝功能之評估。中華醫事科技大學生物科技研究所碩士論文。
趙璧玉、林碧秀、張恬慈、蔡旻汎、楊棋明(2003)白肉火龍果與紅肉火龍果抗氧 化性之研究。華岡農科學報11:13-28。
黎萬君,2001。綠茶多酚化合物對人類端粒酶調控之探討。國立陽明大學口腔生物研究所碩士論文。
Aebi, H. (1984). Catalase in vitro. Methods Enzymol 105, 121-126.
Ahmed, I., John, A., Vijayasarathy, C., Robin, M.A., and Raza, H. (2002). Differential modulation of growth and glutathione metabolism in cultured rat astrocytes by 4-hydroxynonenal and green tea polyphenol, epigallocatechin-3-gallate. Neurotoxicology 23, 289-300.
Alper, G., Girgin, F.K., Ozgonul, M., Mentes, G., and Ersoz, B. (1999). MAO inhibitors and oxidant stress in aging brain tissue. Eur Neuropsychopharmacol 9, 247-252.
Aprikian, O., Duclos, V., Guyot, S., Besson, C., Manach, C., Bernalier, A., Morand, C., Remesy, C., and Demigne, C. (2003). Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J Nutr 133, 1860-1865.
Benedetti, M.S., and Keane, P.E. (1980). Differential changes in monoamine oxidase A and B activity in the aging rat brain. J Neurochem 35, 1026-1032.
Birkmayer, W., Riederer, P., Youdim, M.B., and Linauer, W. (1975). The potentiation of the anti akinetic effect after L-dopa treatment by an inhibitor of MAO-B, Deprenil. J Neural Transm 36, 303-326.
Bond, P.A., and Cundall, R.L. (1977). Properties of monoamine oxidase (MAO) in human blood platelets, plasma, lymphocytes and granulocytes. Clin Chim Acta 80, 317-326.
Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56, 317-333.
Casadesus, G., Shukitt-Hale, B., Stellwagen, H.M., Zhu, X., Lee, H.G., Smith, M.A., and Joseph, J.A. (2004). Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 7, 309-316.
Cesura, A.M., and Pletscher, A. (1992). The new generation of monoamine oxidase inhibitors. Prog Drug Res 38, 171-297.
Chen, Z.P., Schell, J.B., Ho, C.T., and Chen, K.Y. (1998). Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 129, 173-179.
Dani, C., Pasquali, M.A., Oliveira, M.R., Umezu, F.M., Salvador, M., Henriques, J.A., and Moreira, J.C. (2008). Protective effects of purple grape juice on carbon tetrachloride-induced oxidative stress in brains of adult Wistar rats. J Med Food 11, 55-61.
Dogru-Abbasoglu, S., Tamer-Toptani, S., Ugurnal, B., Kocak-Toker, N., Aykac-Toker, G., and Uysal, M. (1997). Lipid peroxidation and antioxidant enzymes in livers and brains of aged rats. Mech Ageing Dev 98, 177-180.
Egashira, T., and Yamanaka, Y. (1981). Further studies on the synthesis of A-form monoamine oxidase. Jpn J Pharmacol 31, 763-770.
Esquivel, P., Stintzing, F.C., and Carle, R. (2007). Phenolic compound profiles and their corresponding antioxidant Capacity of purple pitaya (Hylocereus sp.) genotypes. Z Naturforsch [C] 62, 636-644.
Fowler, C.J., Oreland, L., Marcusson, J., and Winblad, B. (1980). Titration of human brain monoamine oxidase -A and -B by clorgyline and L-deprenil. Naunyn Schmiedebergs Arch Pharmacol 311, 263-272.
Fowler, J.S., Volkow, N.D., Wang, G.J., Logan, J., Pappas, N., Shea, C., and MacGregor, R. (1997). Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging 18, 431-435.
Fridovich, I. (1998). The trail to superoxide dismutase. Protein Sci 7, 2688-2690.
Galvano, F., La Fauci, L., Vitaglione, P., Fogliano, V., Vanella, L., and Felgines, C. (2007). Bioavailability, antioxidant and biological properties of the natural free-radical scavengers cyanidin and related glycosides. Ann Ist Super Sanita 43, 382-393.
Hare, M.L. (1928). Tyramine oxidase: A new enzyme system in liver. Biochem J 22, 968-979.
Heinonen, E.H., Anttila, M.I., and Lammintausta, R.A. (1994). Pharmacokinetic aspects of l-deprenyl (selegiline) and its metabolites. Clin Pharmacol Ther 56, 742-749.
Hornykiewicz, O., Kish, S.J., Becker, L.E., Farley, I., and Shannak, K. (1986). Brain neurotransmitters in dystonia musculorum deformans. N Engl J Med 315, 347-353.
Huang, D., Ou, B., and Prior, R.L. (2005). The chemistry behind antioxidant capacity assays. J Agric Food Chem 53, 1841-1856.
Jahng, J.W., Houpt, T.A., Wessel, T.C., Chen, K., Shih, J.C., and Joh, T.H. (1997). Localization of monoamine oxidase A and B mRNA in the rat brain by in situ hybridization. Synapse 25, 30-36.
Janero, D.R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9, 515-540.
Jayakumar, T., Thomas, P.A., and Geraldine, P. (2007). Protective effect of an extract of the oyster mushroom, Pleurotus ostreatus, on antioxidants of major organs of aged rats. Exp Gerontol 42, 183-191.
Johnston, J.P. (1968). Some observations upon a new inhibitor of monoamine oxidase in brain tissue. In Biochem Pharmacol, pp. 1285-1297.
Klegeris, A., Korkina, L.G., and Greenfield, S.A. (1995). Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions. Free Radic Biol Med 18, 215-222.
Lai, L.S., Chou, S.T., and Chao, W.W. (2001). Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J Agric Food Chem 49, 963-968.
Lee, S.R., Im, K.J., Suh, S.I., and Jung, J.G. (2003). Protective effect of green tea polyphenol (-)-epigallocatechin gallate and other antioxidants on lipid peroxidation in gerbil brain homogenates. Phytother Res 17, 206-209.
Levites, Y., Weinreb, O., Maor, G., Youdim, M.B., and Mandel, S. (2001). Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78, 1073-1082.
LeWitt, P.A. (1993). Neuroprotection by anti-oxidant strategies in Parkinson's disease. Eur Neurol 33 Suppl 1, 24-30.
Loren, D.J., Seeram, N.P., Schulman, R.N., and Holtzman, D.M. (2005). Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury. Pediatr Res 57, 858-864.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275.
Marambaud, P., Zhao, H., and Davies, P. (2005). Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. J Biol Chem 280, 37377-37382.
Mazzio, E.A., Harris, N., and Soliman, K.F. (1998). Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Med 64, 603-606.
McGrath, L.T., McGleenon, B.M., Brennan, S., McColl, D., Mc, I.S., and Passmore, A.P. (2001). Increased oxidative stress in Alzheimer's disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM 94, 485-490.
Mendoza-Nunez, V.M., Ruiz-Ramos, M., Sanchez-Rodriguez, M.A., Retana-Ugalde, R., and Munoz-Sanchez, J.L. (2007). Aging-related oxidative stress in healthy humans. Tohoku J Exp Med 213, 261-268.
Murphy, D.L., Brand, E., Goldman, T., Baker, M., Wright, C., van Kammen, D., and Gordon, E. (1977). Platelet and plasma amine oxidase inhibition and urinary amine excretion changes during phenelzine treatment. J Nerv Ment Dis 164, 129-134.
Nagai, K., Jiang, M.H., Hada, J., Nagata, T., Yajima, Y., Yamamoto, S., and Nishizaki, T. (2002). (-)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res 956, 319-322.
Ng, T.B., Gao, W., Li, L., Niu, S.M., Zhao, L., Liu, J., Shi, L.S., Fu, M., and Liu, F. (2005). Rose (Rosa rugosa)-flower extract increases the activities of antioxidant enzymes and their gene expression and reduces lipid peroxidation. Biochem Cell Biol 83, 78-85.
Oh, C., Murray, B., Bhattacharya, N., Holland, D., and Tatton, W.G. (1994). (-)-Deprenyl alters the survival of adult murine facial motoneurons after axotomy: increases in vulnerable C57BL strain but decreases in motor neuron degeneration mutants. J Neurosci Res 38, 64-74.
Pari, L., and Suresh, A. (2008). Effect of grape (Vitis vinifera L.) leaf extract on alcohol induced oxidative stress in rats. Food and Chemical Toxicology 46, 1627-1634.
Pintar, J.E., Levitt, P., Salach, J.I., Weyler, W., Rosenberg, M.B., and Breakefield, X.O. (1983). Specificity of antisera prepared against pure bovine MAO-B. Brain Res 276, 127-139.
Ray, G., and Husain, S.A. (2002). Oxidants, antioxidants and carcinogenesis. Indian J Exp Biol 40, 1213-1232.
Rinne, J.O., Roytta, M., Paljarvi, L., Rummukainen, J., and Rinne, U.K. (1991). Selegiline (deprenyl) treatment and death of nigral neurons in Parkinson's disease. Neurology 41, 859-861.
Saura, J., Richards, J.G., and Mahy, N. (1994). Differential age-related changes of MAO-A and MAO-B in mouse brain and peripheral organs. Neurobiol Aging 15, 399-408.
Shu, X., Li, Y., Yan, W., and Zhou, Y. (2002). [Anti-oxidative effects of proanthocyanidins in mice induced by D-galactose]. Wei Sheng Yan Jiu 31, 191-192, 196.
Sian, J., Gerlach, M., Youdim, M.B., and Riederer, P. (1999). Parkinson's disease: a major hypokinetic basal ganglia disorder. J Neural Transm 106, 443-476.
Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M., and Lester, P. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology (Academic Press), pp. 152-178.
Sobocanec, S., Balog, T., Kusic, B., Sverko, V., Saric, A., and Marotti, T. (2008). Differential response to lipid peroxidation in male and female mice with age: correlation of antioxidant enzymes matters. Biogerontology.
Soliman, K.F., and Mazzio, E.A. (1998). In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc Soc Exp Biol Med 218, 390-397.
Soto-Otero, R., Mendez-Alvarez, E., Hermida-Ameijeiras, A., Sanchez-Sellero, I., Cruz-Landeira, A., and Lamas, M.L. (2001). Inhibition of brain monoamine oxidase activity by the generation of hydroxyl radicals: potential implications in relation to oxidative stress. Life Sci 69, 879-889.
Soto, J., Ulibarri, I., Jauregui, J.V., Ballesteros, J., and Meana, J.J. (1999). Dissociation between I2-imidazoline receptors and MAO-B activity in platelets of patients with Alzheimer's type dementia. J Psychiatr Res 33, 251-257.
Srividhya, R., Jyothilakshmi, V., Arulmathi, K., Senthilkumaran, V., and Kalaiselvi, P. (2008). Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci 26, 217-223.
Suganuma, M., Okabe, S., Oniyama, M., Tada, Y., Ito, H., and Fujiki, H. (1998). Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19, 1771-1776.
Sun, G.Y., Xia, J., Draczynska-Lusiak, B., Simonyi, A., and Sun, A.Y. (1999). Grape polyphenols protect neurodegenerative changes induced by chronic ethanol administration. Neuroreport 10, 93-96.
Tang, Y.L., Wang, S.W., and Lin, S.M. (2008). Both inorganic and organic selenium supplements can decrease brain monoamine oxidase B enzyme activity in adult rats. Br J Nutr, 1-6.
Wassmann, S., Wassmann, K., and Nickenig, G. (2004). Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44, 381-386.
Zheng, W., and Wang, S.Y. (2003). Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51, 502-509.
Zimatkin, S.M., and Lindros, K.O. (1996). Distribution of catalase in rat brain: aminergic neurons as possible targets for ethanol effects. Alcohol Alcohol 31, 167-174.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔