跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠銘
研究生(外文):Kuan-Ming Chen
論文名稱:探討大豆異黃酮及咖啡因對於大鼠脂肪基質幹細胞分化為脂肪及造骨細胞之影響
論文名稱(外文):The study of effects of soy isoflavones and caffeine on adipogenic and osteogenic differentiation of rat adipose-derived stem cells
指導教授:張基隆張基隆引用關係
指導教授(外文):Kee-Lung Chang
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:171
中文關鍵詞:骨質疏鬆大豆異黃酮素咖啡因脂肪基質幹細胞
外文關鍵詞:osteoporosisisoflavonescaffeineadipose-derived stem cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:491
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
骨質疏鬆為骨骼質量降低及細微構造損傷的骨骼疾病,會造成骨骼容易碎裂,增加骨折發生的危險。隨著年齡的增加,骨髓內的脂肪細胞也隨之增加,並降低造骨細胞的形成,進而導致骨質疏鬆。骨質疏鬆症患者其骨髓內脂肪細胞的量與大小均增加,脂肪細胞過多而使造骨細胞不足,是可能造成骨質疏鬆的原因之一。已有研究證實,大豆異黃酮素﹙soy isoflavones﹚植物性雌激素可以預防骨質疏鬆症、動脈粥狀硬化及肥胖。咖啡因是一種植物性黃嘌呤生物鹼化合物,可以抑制由胰島素刺激之大鼠脂肪細胞造成的肥胖。脂肪基質幹細胞具有分化成不同細胞型態的能力。然而,大豆異黃酮素及咖啡因如何調控基質幹細胞的分化目前仍未被完全了解。因此本研究是利用脂肪基質幹細胞具分化之特性,來探討大豆異黃酮素及咖啡因對基質幹細胞分化為造骨細胞及脂肪細胞之影響。
首先,將分離出來的脂肪基質幹細胞,分別加入促脂肪及造骨細胞分化液,確認取得之細胞具有分化成脂肪及造骨細胞的能力。接著,在基質幹細胞進行分化期間,加入不同濃度的大豆異黃酮素及咖啡因,結果顯示,在低濃度大豆異黃酮素(0.3 μM)及咖啡因 (0.1 mM)作用下,不但可以降低細胞質內三酸甘油脂的累積和基質幹細胞分化為脂肪細胞,亦可增加調控造骨細胞分化之相關蛋白質Runx2、Sirt1及RhoA之表現量及細胞礦物質堆積;然而,當大豆異黃酮素(10 μM)在高濃度時,造成細胞質內三酸甘油脂的堆積增加,同時脂肪細胞分化調控因子PPAR-γ2,脂肪細胞激素leptin mRNA表現量也增加,並減少Runx2、Sirt1及RhoA之表現量及細胞礦物質堆積之情形。而在咖啡因(1 mM)高濃度作用下,雖然可以降低細胞質內三酸甘油脂的累積,但同時也降低了Runx2、Sirt1及RhoA之表現量及細胞礦物質堆積之情形。此外,大豆異黃酮素濃度在0.3 μM、咖啡因在0.1 mM時,不但增加蝕骨細胞抑制因子OPG的表現外,也能有效抑制骨再吸收因子TNF-α、IL-6 及OPN的釋放。這些結果說明大豆異黃酮素及咖啡因在低濃度作用下,可以增加基質幹細胞分化形成造骨細胞而降低脂肪細胞的分化,但在高濃度作用則相反,在大豆異黃酮素高濃度作用下,會增加基質幹細胞分化形成脂肪細胞。因此,每日適量的攝取大豆異黃酮素及咖啡因有助於防止基質幹細胞分化形成脂肪細胞,藉此達到防止骨質疏鬆症之效果。
Osteoporosis is defined as a skeletal disorder characterized by low bone mass andmicroarchitectural deterioration of bone tissue, leading to enhanced bone fragility and aconsequent increase in fracture risk. Aging and osteoporosis cause a decrease in the number of bone-forming osteoblasts and an increase in the number of marrow adipocytes. In addition, early histomorphometric observations suggested that the number and size of marrow adipocytes increase in a linear manner with age. All these evidences clearly demonstrate the reciprocal relationship between osteoblast and adipocyte differentiation. The phytochemicals such as soy isoflavones play an important role in prevention of many diseases including osteoporosis, atherosclerotic and obesity. Caffeine, a plant xanthine alkaloid compound, is one of the major components in tea, coffee, and carbonated drinks. In the present study, caffeine inhibits insulin-induced glucose uptake in rat adipocytes and affects bone metabolism. By cloning studies, they have shown that some adipose-derived stem cells (ADSCs) have multilineage differentiation potential. However, the molecular mechanism of soy isoflavones and caffeine on mesenchymal stem cells differentiation has not been full elucidated. Therefore, the objective of this study investigate the effects of soy isoflavones and caffeine on adipogenic and osteogenic differentiations of stromal stem cells.
In this study, our resulted indicates that ADSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. During stromal stem cells differentiate into adipocytes and osteoblasts treated with lower soy isoflavones dose (0.3 μM) and caffeine (0.1 mM), there were decreased on lipid droplet accumulation through Oil Red O and Nile red staining. And, there were increased the expressions of osteogenic transcriptional factor, Runx2, Sirt1 and Rho A. In addition, deposition of calcium was enhanced slightly by Alzarin Red S and Von Kossa staining. However, at higher soy isoflavones dose (10 μM), there were increased on adipogenic transcriptional factor, PPAR-γ2 and adipocytokine, leptin and cellular lipid droplt accumulation significantly. But, deposition of calcium and the expression of Runx2, Sirt1 and Rho A during osteoblast differentiation were inhibited. Morever, the PPARγ2, leptin mRNA expressions and lipid droplet accumulation during adipocyte differentiation were inhibited by treatment with caffeine. But there were decreased the expressions of Runx2, Sirt1 and Rho A and deposition of calcium. In addition, at 0.3 μM soy isoflavones dose and 0.1mM caffeine dose, there was not only increased the expression of osteoclastogenesis inhibitory factor, OPG but also inhibited the mRNA expressions of bone-resorbing factor, TNF-??, IL-6 and OPN. Taken together, these results suggested lower soy isoflavones and caffeine dose act on stromal stem cells to enhance osteoblast differentiation and inhibit adipocyte differentiation. In addition, they probably inhibited osteoclast activation through enhancing OPG and decreasing bone-resorbing factor. Conversely, higher soy isoflavones and caffeine dose act on stromal stem cells to inhibit osteoblast differentiation. Therefore, appropriate levels of daily soy isoflavones and caffeine intake via nutriention or additional supplementation might be helpful for prevention of increased stromal stem cells adipogenesis as seen in postmenopausal osteoporosis.
壹、中文摘要...................9
貳、英文摘要...................11
?礡B緒論.....................13
一、骨骼系統..................16
1. 骨骼簡介.................16
2. 骨骼的結構................16
3. 骨質的建立................16
4. 骨骼再塑.................17
5. 骨細胞的分類...............19
(1) 骨細胞................20
(2) 造骨細胞...............20
I. 造骨細胞生長及分化過程中相關分子表...22
II. 骨礦化形成之機制...........25
III. 造骨細胞誘導分化之培養液 .......26
(3) 蝕骨細胞 ...............29
I. 調控蝕骨細胞生成及活化之相關分子.....30
二、骨質疏鬆症................33
1. 骨質疏鬆的定義..............34
2. 骨質疏鬆的分類..............35
3. 骨質疏鬆的原因..............36
4. 骨質疏鬆的治療..............37
三、肥胖和骨質疏鬆症的關係............39
1. 骨髓中脂肪細胞和骨質疏鬆的關係.......40
2. 造骨細胞和脂肪細胞生成的關係........41
3. 調控造骨和脂肪細胞分化之轉錄因子......42
四、脂肪細胞..................44
1. 脂肪細胞的分化..............44
2. 調控脂肪細胞分化之轉錄因子.........46
3. 脂肪細胞激素...............49
4. 脂肪細胞誘導分化之培養液..........52
五、幹細胞...................54
1. 幹細胞的定義...............54
2. 幹細胞的分類...............54
3. 成體幹細胞................56
4. 間葉幹細胞................56
5. 脂肪幹細胞................57
六、大豆異黃酮.................59
1. Isoflavones的介紹及化學構造.........59
2. Isoflavones的特性..............60
3. Isoflavones於生理保健之應用.........61
七、咖啡因...................63
1. 咖啡因的特性...............63
2. 咖啡因之動力學..............64
3. 咖啡因的作用機轉.............64
4. 咖啡因的優點...............64
肆、研究目的...................67
伍、研究設計...................68
陸、實驗材料...................69
一、 動物...................69
二、 細胞...................69
三、 材料...................69
四、 藥品...................73
五、 儀器與設備................81
柒、實驗方法...................84
一、 細胞培養.................84
1. 解凍細胞.................84
2. 繼代培養.................84
3. 細胞計數.................84
4. 冷凍細胞.................85
二、 脂肪基質幹細胞分離.............85
1. 脂肪組織的萃取..............86
2. 脂肪基質幹細胞的萃取及培養.........87
三、 脂肪基質幹細胞的誘導分化..........87
1. 脂肪細胞的誘導分化.............87
2. 造骨細胞的誘導分化.............88
四、 M210B4細胞的誘導分化............89
1. 脂肪細胞的誘導分化.............89
2. 造骨細胞的誘導分化.............90
五、 脂肪細胞之檢測...............91
1. 油紅染色法................91
2. 尼羅河紅染色法..............91
六、 骨礦化之檢測...............92
1. 茜素紅染色法...............92
2. Von Kossa stain...............92
3. 鹼性磷酸?′V色法.............93
4. 鹼性磷酸?′〝妠?定.............94
七、 反轉錄聚合?○s鎖反應............94
八、 西方墨點法................97
捌、實驗結果...................101
一、 脂肪基質幹細胞之取得及分化特性之探討.....101
1. 脂肪基質幹細胞之特性及型態表現.......101
2. 脂肪基質幹細胞誘導分化成脂肪細胞及造骨細胞之測
定....................102
二、 M210B4細胞誘導分化成脂肪細胞及造骨細胞及鑑定....................103
三、 大豆異黃酮素及咖啡因對於基質幹細胞誘導分化成脂肪細胞的影響................104
四、 大豆異黃酮素及咖啡因對於基質幹細胞誘導分化成脂肪
五、 細胞之轉錄因子PPAR-γ2的影響........106
六、 大豆異黃酮素及咖啡因對於脂肪細胞之細胞激素leptin的影響...................108
七、 大豆異黃酮素及咖啡因對於基質幹細胞誘導分化成造骨細胞的影響................108
八、 大豆異黃酮素及咖啡因對於脂肪基質幹細胞誘導分化成造骨細胞之轉錄因子的影響..........110
九、 大豆異黃酮素及咖啡因對於基質幹細胞誘導分化成造骨細胞之鹼性磷酸?〞獐v響...........112
十、 大豆異黃酮素及咖啡因對於脂肪基質幹細胞誘導分化成造骨細胞之蝕骨細胞抑制因子OPG的影響.....113
十一、 大豆異黃酮素及咖啡因對於脂肪基質幹細胞誘導分化成脂肪細胞之骨再吸收因子的影響.......114
玖、討論.....................115
拾、參考文獻...................120拾壹、圖表....................128
拾貳、附錄.................... 163
Berridge MJ, Bootman MD, Lipp P 1998 Calcium--a life and death signal. Nature 395(6703):645-8.
2.Riggs BL 1991 Overview of osteoporosis. West J Med 154(1):63-77.
3.Nuttall ME, Gimble JM 2004 Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol 4(3):290-4.
4.Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B 2004 Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3(6):379-89.
5.Kim WK, Meliton V, Amantea CM, Hahn TJ, Parhami F 2007 20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism. J Bone Miner Res 22(11):1711-9.
6.Barrett J 1996 Phytoestrogens. Friends or foes? Environ Health Perspect 104(5):478-82.
7.Messina MJ 1999 Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70(3 Suppl):439S-450S.
8.Tham DM, Gardner CD, Haskell WL 1998 Clinical review 97: Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 83(7):2223-35.
9.Putnam SE, Scutt AM, Bicknell K, Priestley CM, Williamson EM 2007 Natural products as alternative treatments for metabolic bone disorders and for maintenance of bone health. Phytother Res 21(2):99-112.
10.Teitelbaum SL, Ross FP 2003 Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8):638-49.
11.Blair HC, Zaidi M, Schlesinger PH 2002 Mechanisms balancing skeletal matrix synthesis and degradation. Biochem J 364(Pt 2):329-41.
12.Komori T, Kishimoto T 1998 Cbfa1 in bone development. Curr Opin Genet Dev 8(4):494-9.
13.Denhardt DT, Noda M, O''Regan AW, Pavlin D, Berman JS 2001 Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107(9):1055-61.
14.Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J 2002 Osteopontin--a molecule for all seasons. Qjm 95(1):3-13.
15.Bellows CG, Heersche JN, Aubin JE 1992 Inorganic phosphate added exogenously or released from beta-glycerophosphate initiates mineralization of osteoid nodules in vitro. Bone Miner 17(1):15-29.
16.Walsh S, Jordan GR, Jefferiss C, Stewart K, Beresford JN 2001 High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis. Rheumatology (Oxford) 40(1):74-83.
17.Ganta DR, McCarthy MB, Gronowicz GA 1997 Ascorbic acid alters collagen integrins in bone culture. Endocrinology 138(9):3606-12.
18.Franceschi RT 1992 The role of ascorbic acid in mesenchymal differentiation. Nutr Rev 50(3):65-70.
19.Dean DD, Schwartz Z, Bonewald L, Muniz OE, Morales S, Gomez R, Brooks BP, Qiao M, Howell DS, Boyan BD 1994 Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycan-degrading metalloproteinases after addition of beta-glycerophosphate and ascorbic acid. Calcif Tissue Int 54(5):399-408.
20.Taira M, Nakao H, Takahashi J, Araki Y 2003 Effects of two vitamins, two growth factors and dexamethasone on the proliferation of rat bone marrow stromal cells and osteoblastic MC3T3-E1 cells. J Oral Rehabil 30(7):697-701.
21.Boyle WJ, Simonet WS, Lacey DL 2003 Osteoclast differentiation and activation. Nature 423(6937):337-42.
22.Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ 1999 Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20(3):345-57.
23.Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T 2000 Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191(2):275-86.
24.Takayanagi H 2007 Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7(4):292-304.
25.Takayanagi H 2005 Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 83(3):170-9.
26.Yoshitake H, Rittling SR, Denhardt DT, Noda M 1999 Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A 96(14):8156-60.
27.Tilg H, Moschen AR 2008 Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14(3-4):222-31.
28.Takahashi N, Udagawa N, Suda T 1999 [Role of osteoclast differentiation factor, the new member of the TNF ligand family, in osteoclast differentiation and function]. Seikagaku 71(4):241-53.
29.Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie MT, Martin TJ, Suda T 1999 Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 25(5):517-23.
30.Udagawa N, Takahashi N, Katagiri T, Tamura T, Wada S, Findlay DM, Martin TJ, Hirota H, Taga T, Kishimoto T, Suda T 1995 Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. J Exp Med 182(5):1461-8.
31.Nakamura I, Duong le T, Rodan SB, Rodan GA 2007 Involvement of alpha(v)beta3 integrins in osteoclast function. J Bone Miner Metab 25(6):337-44.
32.Mundy GR 1999 What can we learn from bone biology for the treatment for osteoporosis? Osteoporos Int 9 Suppl 2:S40-7.
33.Mund C, Zellner R 2003 Raman- and Mie-spectroscopic studies of the cooling behaviour of levitated, single sulfuric acid/H2O microdroplets. Chemphyschem 4(6):638-45.
34.Mishima S 1988 The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats. J UOEH 10(1):31-45.
35.Riggs BL, Melton LJ, 3rd 1986 Involutional osteoporosis. N Engl J Med 314(26):1676-86.
36.Buckley CD 1997 Science, medicine, and the future. Treatment of rheumatoid arthritis. BMJ 315(7102):236-8.
37.Tsai KS, Tai TY 1997 Epidemiology of osteoporosis in Taiwan. Osteoporos Int 7 Suppl 3:S96-8.
38.1994 Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1-129.
39.Rosen CJ, Bouxsein ML 2006 Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2(1):35-43.
40.Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW 2008 Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23(1):17-29.
41.Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME 2006 Playing with bone and fat. J Cell Biochem 98(2):251-66.
42.Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW 2007 Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92(5):1640-6.
43.Pei L, Tontonoz P 2004 Fat''s loss is bone''s gain. J Clin Invest 113(6):805-6.
44.Goltzman D 2002 Discoveries, drugs and skeletal disorders. Nat Rev Drug Discov 1(10):784-96.
45.Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, Dang G 2003 Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun 308(3):458-62.
46.Wronski TJ, Walsh CC, Ignaszewski LA 1986 Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7(2):119-23.
47.Rozman C, Feliu E, Berga L, Reverter JC, Climent C, Ferran MJ 1989 Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol 17(1):34-7.
48.Wang GJ, Sweet DE, Reger SI, Thompson RC 1977 Fat-cell changes as a mechanism of avascular necrosis of the femoral head in cortisone-treated rabbits. J Bone Joint Surg Am 59(6):729-35.
49.Meunier P, Aaron J, Edouard C, Vignon G 1971 Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147-54.
50.Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC 2005 Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236(3):945-51.
51.Duque G, Troen BR 2008 Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc 56(5):935-41.
52.Caplan AI, Bruder SP 2001 Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259-64.
53.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR 1999 Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143-7.
54.Gregoire FM, Smas CM, Sul HS 1998 Understanding adipocyte differentiation. Physiol Rev 78(3):783-809.
55.Gunther T, Schule R 2007 Fat or bone? A non-canonical decision. Nat Cell Biol 9(11):1229-31.
56.Sottile V, Seuwen K 2000 Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). FEBS Lett 475(3):201-4.
57.Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME 1992 Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102 ( Pt 2):341-51.
58.Nuttall ME, Gimble JM 2000 Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 27(2):177-84.
59.Backesjo CM, Li Y, Lindgren U, Haldosen LA 2006 Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res 21(7):993-1002.
60.Tontonoz P, Hu E, Spiegelman BM 1995 Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr Opin Genet Dev 5(5):571-6.
61.Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM 1994 mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8(10):1224-34.
62.Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM 1999 PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611-7.
63.Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H 2004 PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113(6):846-55.
64.Jeon MJ, Kim JA, Kwon SH, Kim SW, Park KS, Park SW, Kim SY, Shin CS 2003 Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 278(26):23270-7.
65.Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L 2004 Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429(6993):771-6.
66.McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS 2004 Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483-95.
67.Gesta S, Tseng YH, Kahn CR 2007 Developmental origin of fat: tracking obesity to its source. Cell 131(2):242-56.
68.Spiegelman BM, Enerback S 2006 "The adipocyte: a multifunctional cell". Cell Metab 4(6):425-7.
69.Kershaw EE, Flier JS 2004 Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548-56.
70.Spiegelman BM, Flier JS 1996 Adipogenesis and obesity: rounding out the big picture. Cell 87(3):377-89.
71.Wu Z, Puigserver P, Spiegelman BM 1999 Transcriptional activation of adipogenesis. Curr Opin Cell Biol 11(6):689-94.
72.Fajas L, Fruchart JC, Auwerx J 1998 Transcriptional control of adipogenesis. Curr Opin Cell Biol 10(2):165-73.
73.McKnight SL, Lane MD, Gluecksohn-Waelsch S 1989 Is CCAAT/enhancer-binding protein a central regulator of energy metabolism? Genes Dev 3(12B):2021-4.
74.Cao Z, Umek RM, McKnight SL 1991 Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5(9):1538-52.
75.Shulman AI, Mangelsdorf DJ 2005 Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 353(6):604-15.
76.Brun RP, Tontonoz P, Forman BM, Ellis R, Chen J, Evans RM, Spiegelman BM 1996 Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev 10(8):974-84.
77.Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, Reddy JK 1995 Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A 92(17):7921-5.
78.Tilg H, Moschen AR 2006 Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6(10):772-83.
79.Moinat M, Deng C, Muzzin P, Assimacopoulos-Jeannet F, Seydoux J, Dulloo AG, Giacobino JP 1995 Modulation of obese gene expression in rat brown and white adipose tissues. FEBS Lett 373(2):131-4.
80.Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, et al. 1995 Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1(11):1155-61.
81.Rohner-Jeanrenaud F, Jeanrenaud B 1996 Obesity, leptin, and the brain. N Engl J Med 334(5):324-5.
82.Caro JF, Sinha MK, Kolaczynski JW, Zhang PL, Considine RV 1996 Leptin: the tale of an obesity gene. Diabetes 45(11):1455-62.
83.Hotamisligil GS, Shargill NS, Spiegelman BM 1993 Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87-91.
84.Fantuzzi G 2005 Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115(5):911-9; quiz 920.
85.Trujillo ME, Scherer PE 2006 Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27(7):762-78.
86.Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM 1996 IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271(5249):665-8.
87.Shoelson SE, Lee J, Goldfine AB 2006 Inflammation and insulin resistance. J Clin Invest 116(7):1793-801.
88.Wellen KE, Hotamisligil GS 2003 Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112(12):1785-8.
89.Nonogaki K, Fuller GM, Fuentes NL, Moser AH, Staprans I, Grunfeld C, Feingold KR 1995 Interleukin-6 stimulates hepatic triglyceride secretion in rats. Endocrinology 136(5):2143-9.
90.Senn JJ, Klover PJ, Nowak IA, Mooney RA 2002 Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51(12):3391-9.
91.Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS, Chrousos GP 1997 Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab 82(12):4167-70.
92.Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y, Heywood EB, Jones KL, Kawamori R, Cassis LA, Tschop MH, Bruemmer D 2007 Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest 117(10):2877-88.
93.Cornelius P, MacDougald OA, Lane MD 1994 Regulation of adipocyte development. Annu Rev Nutr 14:99-129.
94.Avram MM, Avram AS, James WD 2007 Subcutaneous fat in normal and diseased states 3. Adipogenesis: from stem cell to fat cell. J Am Acad Dermatol 56(3):472-92.
95.Rosen ED, MacDougald OA 2006 Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885-96.
96.Verfaillie CM 2002 Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 12(11):502-8.
97.Gimble J, Guilak F 2003 Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5(5):362-9.
98.Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH 2001 Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211-28.
99.Fraser JK, Wulur I, Alfonso Z, Hedrick MH 2006 Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24(4):150-4.
100.Gimble JM, Katz AJ, Bunnell BA 2007 Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249-60.
101.Miksicek RJ 1993 Commonly occurring plant flavonoids have estrogenic activity. Mol Pharmacol 44(1):37-43.
102.Yamaguchi M 2006 Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis. Yakugaku Zasshi 126(11):1117-37.
103.Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE 1999 Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51(1):83-133.
104.Ross GW, Abbott RD, Petrovitch H, White LR, Tanner CM 2000 Relationship between caffeine intake and parkinson disease. Jama 284(11):1378-9.
105.Gabrielli B, Chau YQ, Giles N, Harding A, Stevens F, Beamish H 2007 Caffeine promotes apoptosis in mitotic spindle checkpoint-arrested cells. J Biol Chem 282(10):6954-64.
106.Greenberg JA, Boozer CN, Geliebter A 2006 Coffee, diabetes, and weight control. Am J Clin Nutr 84(4):682-93.
107.Rodbell M 1964 Metabolism of Isolated Fat Cells. I. Effects of Hormones on Glucose Metabolism and Lipolysis. J Biol Chem 239:375-80.
108.Wabitsch M, Heinze E, Hauner H, Shymko RM, Teller WM, De Meyts P, Ilondo MM 1996 Biological effects of human growth hormone in rat adipocyte precursor cells and newly differentiated adipocytes in primary culture. Metabolism 45(1):34-42.
109.Deslex S, Negrel R, Ailhaud G 1987 Development of a chemically defined serum-free medium for differentiation of rat adipose precursor cells. Exp Cell Res 168(1):15-30.
110.Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM 2001 Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54-63.
111.Kha HT, Basseri B, Shouhed D, Richardson J, Tetradis S, Hahn TJ, Parhami F 2004 Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J Bone Miner Res 19(5):830-40.
112.Feldman BJ, Streeper RS, Farese RV, Jr., Yamamoto KR 2006 Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc Natl Acad Sci U S A 103(42):15675-80.
113.Greenspan P, Mayer EP, Fowler SD 1985 Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100(3):965-73.
114.Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G 2000 Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100(2):197-207.
115.Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G 2005 Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434(7032):514-20.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top