|
1.Partridge, S.R., et al., Transposons Tn1696 and Tn21 and their integrons In4 and In2 have independent origins. Antimicrob Agents Chemother, 2001. 45: 1263-70. 2.Partridge, S.R., et al., Family of class 1 integrons related to In4 from Tn1696. Antimicrob Agents Chemother, 2001. 45: 3014-20. 3.Rowe-Magnus, D.A., A.M. Guerout, and D. Mazel, Super-integrons. Res Microbiol, 1999. 150: 641-51. 4.Hall, R.M., D.E. Brookes, and H.W. Stokes, Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol, 1991. 5: 1941-59. 5.Japoni, A., et al., Assay for integrons and pattern of antibiotic resistance in clinical Escherichia coli strains by PCR-RFLP in Southern Iran. Jpn J Infect Dis, 2008. 61: 85-8. 6.Hsueh, P.R., C.Y. Liu, and K.T. Luh, Current status of antimicrobial resistance in Taiwan. Emerg Infect Dis, 2002. 8: 132-7. 7.Watanabe, T. and T. Fukasawa, Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J Bacteriol, 1961. 81: 669-78. 8.Lupski, J.R., Molecular mechanisms for transposition of drug-resistance genes and other movable genetic elements. Rev Infect Dis, 1987. 9: 357-68. 9.Rubens, C.E., W.F. McNeill, and W.E. Farrar, Jr., Evolution of multiple-antibiotic-resistance plasmids mediated by transposable plasmid deoxyribonucleic acid sequences. J Bacteriol, 1979. 140: 713-9. 10.Watanabe, T. and T. Fukasawa, Episome-mediated transfer of drug resistance in Enterobacteriaceae. III. Transduotion of resistance factors. J Bacteriol, 1961. 82: 202-9. 11.Martinez, E. and F. de la Cruz, Transposon Tn21 encodes a RecA-independent site-specific integration system. Mol Gen Genet, 1988. 211: 320-5. 12.Sundstrom, L., et al., Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn21. Mol Gen Genet, 1988. 213: 191-201. 13.Hall, R.M. and H.W. Stokes, Integrons: novel DNA elements which capture genes by site-specific recombination. Genetica, 1993. 90: 115-32. 14.Ploy, M.C., et al., Integrons: an antibiotic resistance gene capture and expression system. Clin Chem Lab Med, 2000. 38: 483-7. 15.Bennett, P.M., Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol, 2008. 153 Suppl 1: S347-57. 16.Hall, R.M. and C.M. Collis, Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Updat, 1998. 1: 109-19. 17.Hall, R.M. and C.M. Collis, Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol, 1995. 15: 593-600. 18.Rowe-Magnus, D.A. and D. Mazel, The role of integrons in antibiotic resistance gene capture. Int J Med Microbiol, 2002. 292: 115-25. 19.Fluit, A.C. and F.J. Schmitz, Resistance integrons and super-integrons. Clin Microbiol Infect, 2004. 10: 272-88. 20.Recchia, G.D. and R.M. Hall, Gene cassettes: a new class of mobile element. Microbiology, 1995. 141 ( Pt 12): 3015-27. 21.Mazel, D., Integrons: agents of bacterial evolution. Nat Rev Microbiol, 2006. 4: 608-20. 22.Collis, C.M., et al., Site-specific insertion of gene cassettes into integrons. Mol Microbiol, 1993. 9: 41-52. 23.Collis, C.M. and R.M. Hall, Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother, 1995. 39: 155-62. 24.Collis, C.M. and R.M. Hall, Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J Bacteriol, 1992. 174: 1574-85. 25.Stokes, H.W. and R.M. Hall, A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol, 1989. 3: 1669-83. 26.Rowe-Magnus, D.A., A.M. Guerout, and D. Mazel, Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol Microbiol, 2002. 43: 1657-69. 27.Grape, M., et al., Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Clin Microbiol Infect, 2005. 11: 185-92. 28.Saenz, Y., et al., Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob Agents Chemother, 2004. 48: 3996-4001. 29.Nandi, S., et al., Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci U S A, 2004. 101: 7118-22. 30.Tauch, A., et al., The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid, 2002. 48: 117-29. 31.Nesvera, J., J. Hochmannova, and M. Patek, An integron of class 1 is present on the plasmid pCG4 from gram-positive bacterium Corynebacterium glutamicum. FEMS Microbiol Lett, 1998. 169: 391-5. 32.Stokes, H.W., et al., Class 1 integrons potentially predating the association with Tn402-like transposition genes are present in a sediment microbial community. J Bacteriol, 2006. 188: 5722-30. 33.Partridge, S.R., H.J. Brown, and R.M. Hall, Characterization and movement of the class 1 integron known as Tn2521 and Tn1405. Antimicrob Agents Chemother, 2002. 46: 1288-94. 34.Peters, J.E. and N.L. Craig, Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. Genes Dev, 2001. 15: 737-47. 35.Hayes, F., Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet, 2003. 37: 3-29. 36.Kholodii, G.Y., et al., Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol, 1995. 17: 1189-200. 37.Radstrom, P., et al., Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol, 1994. 176: 3257-68. 38.Shapiro, J.A. and P. Sporn, Tn402: a new transposable element determining trimethoprim resistance that inserts in bacteriophage lambda. J Bacteriol, 1977. 129: 1632-5. 39.Toleman, M.A., P.M. Bennett, and T.R. Walsh, Common regions e.g. orf513 and antibiotic resistance: IS91-like elements evolving complex class 1 integrons. J Antimicrob Chemother, 2006. 58: 1-6. 40.Toleman, M.A., P.M. Bennett, and T.R. Walsh, ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev, 2006. 70: 296-316. 41.Partridge, S.R. and R.M. Hall, In34, a complex In5 family class 1 integron containing orf513 and dfrA10. Antimicrob Agents Chemother, 2003. 47: 342-9. 42.Doi, Y., et al., Characterization of a novel plasmid-mediated cephalosporinase (CMY-9) and its genetic environment in an Escherichia coli clinical isolate. Antimicrob Agents Chemother, 2002. 46: 2427-34. 43.Kado, C.I. and S.T. Liu, Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol, 1981. 145: 1365-73. 44.Kamali-Moghaddam, M. and L. Sundstrom, Transposon targeting determined by resolvase. FEMS Microbiol Lett, 2000. 186: 55-9. 45.Liebert, C.A., R.M. Hall, and A.O. Summers, Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev, 1999. 63: 507-22. 46.Brown, H.J., H.W. Stokes, and R.M. Hall, The integrons In0, In2, and In5 are defective transposon derivatives. J Bacteriol, 1996. 178: 4429-37. 47.Aubert, D., et al., Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of beta-lactam resistance genes. J Bacteriol, 2006. 188: 6506-14. 48.Burkardt, H.J., G. Riess, and A. Puhler, Relationship of group P1 plasmids revealed by heteroduplex experiments: RP1, RP4, R68 and RK2 are identical. J Gen Microbiol, 1979. 114: 341-8. 49.Jobanputra, R.S. and N. Datta, Trimethoprim R factors in enterobacteria from clinical specimens. J Med Microbiol, 1974. 7: 169-77. 50.Yanisch-Perron, C., J. Vieira, and J. Messing, Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 1985. 33: 103-19.
|