|
1.Alvarez, M., J. H. Tran, N. Chow, and G. A. Jacoby. 2004. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob Agents Chemother 48:533-7. 2.Ambler, R. P. 1980. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321-31. 3.Ananthan, S., and A. Subha. 2005. Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and Escherichia coli. Indian J Med Microbiol 23:20-3. 4.Babic, M., A. M. Hujer, and R. A. Bonomo. 2006. What''s new in antibiotic resistance? Focus on β-lactamases. Drug Resist Updat 9:142-56. 5.Barnaud, G., G. Arlet, C. Verdet, O. Gaillot, P. H. Lagrange, and A. Philippon. 1998. Salmonella enteritidis: AmpC plasmid-mediated inducible β-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob Agents Chemother 42:2352-8. 6.Bass, L., C. A. Liebert, M. D. Lee, A. O. Summers, D. G. White, S. G. Thayer, and J. J. Maurer. 1999. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob Agents Chemother 43:2925-9. 7.Bauernfeind, A., Y. Chong, and K. Lee. 1998. Plasmid-encoded AmpC β-lactamases: how far have we gone 10 years after the discovery? Yonsei Med J 39:520-5. 8.Bauernfeind, A., Y. Chong, and S. Schweighart. 1989. Extended broad spectrum β-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17:316-21. 9.Bergstrom, S., O. Olsson, and S. Normark. 1982. Common evolutionary origin of chromosomal β-lactamase genes in enterobacteria. J Bacteriol 150:528-34. 10.Black, J. A., E. S. Moland, and K. S. Thomson. 2005. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol 43:3110-3. 11.Black, J. A., K. S. Thomson, J. D. Buynak, and J. D. Pitout. 2005. Evaluation of β-lactamase inhibitors in disk tests for detection of plasmid-mediated AmpC β-lactamases in well-characterized clinical strains of Klebsiella spp. J Clin Microbiol 43:4168-71. 12.Brown, A. W., S. C. Rankin, and D. J. Platt. 2000. Detection and characterisation of integrons in Salmonella enterica serotype enteritidis. FEMS Microbiol Lett 191:145-9. 13.Bush, K. 2001. New β-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 32:1085-9. 14.Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211-33. 15.Chambers, H. F. 1997. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 10:781-91. 16.Chang, S. C., C. T. Fang, P. R. Hsueh, Y. C. Chen, and K. T. Luh. 2000. Klebsiella pneumoniae isolates causing liver abscess in Taiwan. Diagn Microbiol Infect Dis 37:279-84. 17.Charlotte Verdet, Y. B., Vale´rie Gautier, Olivier Adam,, and a. G. A. Zahia Ould-Hocine. 2006. Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: genetic organization of the ampC and ampR genes originating from Morganella morganii. Antimicrob Agents Chemother 50:607–17. 18.Chaves, J., M. G. Ladona, C. Segura, A. Coira, R. Reig, and C. Ampurdanes. 2001. SHV-1 β-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob Agents Chemother 45:2856-61. 19.Chou, H. C., C. Z. Lee, L. C. Ma, C. T. Fang, S. C. Chang, and J. T. Wang. 2004. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 72:3783-92. 20.Clewell, D. B., and C. Gawron-Burke. 1986. Conjugative transposons and the dissemination of antibiotic resistance in streptococci. Annu Rev Microbiol 40:635-59. 21.Clinical and Laboratory Standards Institute. 2006. Performance standards for antimicrobial disk susceptibility tests;Approved Standard—Ninth Edition. M2-A9. CLSI, Wayne PA, USA. 22.Collis, C. M., and R. M. Hall. 1995. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother 39:155-62. 23.Collis, C. M., and R. M. Hall. 1992. Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol Microbiol 6:2875-85. 24.Collis, C. M., and R. M. Hall. 1992. Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J Bacteriol 174:1574-85. 25.Coudron, P. E. 2005. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol 43:4163-7. 26.Coudron, P. E., E. S. Moland, and K. S. Thomson. 2000. Occurrence and detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. J Clin Microbiol 38:1791-6. 27.Dalsgaard, A., A. Forslund, N. V. Tam, D. X. Vinh, and P. D. Cam. 1999. Cholera in Vietnam: changes in genotypes and emergence of class I integrons containing aminoglycoside resistance gene cassettes in Vibrio cholerae O1 strains isolated from 1979 to 1996. J Clin Microbiol 37:734-41. 28.Doi, Y., and D. L. Paterson. 2007. Detection of plasmid-mediated class C β-lactamases. Int J Infect Dis 11:191-7. 29.El-Mansi, M., K. J. Anderson, C. A. Inche, L. K. Knowles, and D. J. Platt. 2000. Isolation and curing of the Klebsiella pneumoniae large indigenous plasmid using sodium dodecyl sulphate. Res Microbiol 151:201-8. 30.Fang, C. T., Y. P. Chuang, C. T. Shun, S. C. Chang, and J. T. Wang. 2004. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199:697-705. 31.Fluit, A. C., and F. J. Schmitz. 1999. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 18:761-70. 32.Fluit, A. C., and F. J. Schmitz. 2004. Resistance integrons and super-integrons. Clin Microbiol Infect 10:272-88. 33.Gaillot, O., C. Clement, M. Simonet, and A. Philippon. 1997. Novel transferable β-lactam resistance with cephalosporinase characteristics in Salmonella enteritidis. J Antimicrob Chemother 39:85-7. 34.Gazouli, M., L. S. Tzouvelekis, E. Prinarakis, V. Miriagou, and E. Tzelepi. 1996. Transferable cefoxitin resistance in enterobacteria from Greek hospitals and characterization of a plasmid-mediated group 1 β-lactamase (LAT-2). Antimicrob Agents Chemother 40:1736-40. 35.Georgopapadakou, N. H. 1993. Penicillin-binding proteins and bacterial resistance to β-lactams. Antimicrob Agents Chemother 37:2045–53. 36.Giamarellou, H. 2005. Multidrug resistance in gram-negative bacteria that produce extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect 11 Suppl 4:1-16. 37.Girlich, D., A. Karim, C. Spicq, and P. Nordmann. 2000. Plasmid-mediated cephalosporinase ACC-1 in clinical isolates of Proteus mirabilis and Escherichia coli. Eur J Clin Microbiol Infect Dis 19:893-5. 38.Goffin, C., and J. M. Ghuysen. 1998. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079-93. 39.Hall, R. M. 1997. Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. Ciba Found Symp 207:192-202. 40.Hall, R. M., and C. M. Collis. 1998. Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Updat 1:109-19. 41.Hall, R. M., and C. M. Collis. 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol 15:593-600. 42.Hall, R. M., and H. W. Stokes. 1993. Integrons: novel DNA elements which capture genes by site-specific recombination. Genetica 90:115-32. 43.Hanson, N. D. 2003. AmpC β-lactamases: what do we need to know for the future? J Antimicrob Chemother 52:2-4. 44.Hanson, N. D., and C. C. Sanders. 1999. Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5:881-94. 45.Heritage, J., F. H. M''Zali, D. Gascoyne-Binzi, and P. M. Hawkey. 1999. Evolution and spread of SHV extended-spectrum β-lactamases in gram-negative bacteria. J Antimicrob Chemother 44:309-18. 46.Hooper, D. C. 2005. Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Clin Infect Dis 40:1811-7. 47.Horii, T., Y. Arakawa, M. Ohta, T. Sugiyama, R. Wacharotayankun, H. Ito, and N. Kato. 1994. Characterization of a plasmid-borne and constitutively expressed blaMOX-1 gene encoding AmpC-type β-lactamase. Gene 139:93-8. 48.Hsueh, P. R., C. Y. Liu, and K. T. Luh. 2002. Current status of antimicrobial resistance in Taiwan. Emerg Infect Dis 8:132-7. 49.Jacobs, C., J. M. Frere, and S. Normark. 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell 88:823-32. 50.Jacobs, C., B. Joris, M. Jamin, K. Klarsov, J. Van Beeumen, D. Mengin-Lecreulx, J. van Heijenoort, J. T. Park, S. Normark, and J. M. Frere. 1995. AmpD, essential for both β-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 15:553-9. 51.Jacoby, G. A., D. M. Mills, and N. Chow. 2004. Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:3203-6. 52.Jacoby, G. A., and L. S. Munoz-Price. 2005. The new β-lactamases. N Engl J Med 352:380-91. 53.Jacoby, G. A., K. E. Walsh, and V. J. Walker. 2006. Identification of extended-spectrum, AmpC, and carbapenem- hydrolyzing β-lactamases in Escherichia coli and Klebsiella pneumoniae by disk tests. J Clin Microbiol 44:1971-6. 54.Kabha, K., L. Nissimov, A. Athamna, Y. Keisari, H. Parolis, L. A. Parolis, R. M. Grue, J. Schlepper-Schafer, A. R. Ezekowitz, D. E. Ohman, and et al. 1995. Relationships among capsular structure, phagocytosis, and mouse virulence in Klebsiella pneumoniae. Infect Immun 63:847-52. 55.Kado, C. I., and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365-73. 56.Ko, W. C., D. L. Paterson, A. J. Sagnimeni, D. S. Hansen, A. Von Gottberg, S. Mohapatra, J. M. Casellas, H. Goossens, L. Mulazimoglu, G. Trenholme, K. P. Klugman, J. G. McCormack, and V. L. Yu. 2002. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis 8:160-6. 57.Koeleman, J. G., J. Stoof, M. W. Van Der Bijl, C. M. Vandenbroucke-Grauls, and P. H. Savelkoul. 2001. Identification of epidemic strains of Acinetobacter baumannii by integrase gene PCR. J Clin Microbiol 39:8-13. 58.Levesque, C., L. Piche, C. Larose, and P. H. Roy. 1995. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 39:185-91. 59.Li, L., and C. K. Lim. 2000. A novel large plasmid carrying multiple β-lactam resistance genes isolated from a Klebsiella pneumoniae strain. J Appl Microbiol 88:1038-48. 60.Li, Y., Q. Li, Y. Du, X. Jiang, J. Tang, J. Wang, G. Li, and Y. Jiang. 2008. Prevalence of plasmid-mediated AmpC β-lactamases in a Chinese university hospital from 2003 to 2005: first report of CMY-2-type AmpC β-lactamase resistance in China. J Clin Microbiol 46:1317-21. 61.Lindquist, S., F. Lindberg, and S. Normark. 1989. Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC β-lactamase gene. J Bacteriol 171:3746-53. 62.Livermore, D. M. 1995. β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557-84. 63.Lupski, J. R. 1987. Molecular mechanisms for transposition of drug-resistance genes and other movable genetic elements. Rev Infect Dis 9:357-68. 64.Maguire, A. J., D. F. Brown, J. J. Gray, and U. Desselberger. 2001. Rapid screening technique for class 1 integrons in Enterobacteriaceae and nonfermenting gram-negative bacteria and its use in molecular epidemiology. Antimicrob Agents Chemother 45:1022-9. 65.Maxwell, A. 1997. DNA gyrase as a drug target. Trends Microbiol 5:102-9. 66.McDonald, L. C., M. T. Chen, T. L. Lauderdale, and M. Ho. 2001. The use of antibiotics critical to human medicine in food-producing animals in Taiwan. J Microbiol Immunol Infect 34:97-102. 67Nasim, K., S. Elsayed, J. D. Pitout, J. Conly, D. L. Church, and D. B. Gregson. 2004. New method for laboratory detection of AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae. J Clin Microbiol 42:4799-802. 68.Netzel, T. C., I. Jindani, N. Hanson, B. M. Turner, L. Smith, and K. H. Rand. 2007. The AmpC inhibitor, Syn2190, can be used to reveal extended-spectrum β-lactamases in Escherichia coli. Diagn Microbiol Infect Dis 58:345-8. 69.Neu, H. C. 1992. The crisis in antibiotic resistance. Science 257:1064-73. 70.Papanicolaou, G. A., A. A. Medeiros, and G. A. Jacoby. 1990. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 34:2200-9. 71.Paterson, D. L., and R. A. Bonomo. 2005. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18:657-86. 72.Pepperell, C., J. V. Kus, M. A. Gardam, A. Humar, and L. L. Burrows. 2002. Low-virulence Citrobacter species encode resistance to multiple antimicrobials. Antimicrob Agents Chemother 46:3555-60. 73.Perera, G., and R. Hay. 2005. A guide to antibiotic resistance in bacterial skin infections. J Eur Acad Dermatol Venereol 19:531-45. 74.Perez-Perez, F. J., and N. D. Hanson. 2002. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153-62. 75.Philippon, A., G. Arlet, and G. A. Jacoby. 2002. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother 46:1-11. 76.Pitout, J. D., P. Nordmann, K. B. Laupland, and L. Poirel. 2005. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemother 56:52-9. 77.Pitout, J. D., C. C. Sanders, and W. E. Sanders, Jr. 1997. Antimicrobial resistance with focus on β-lactam resistance in gram-negative bacilli. Am J Med 103:51-9. 78.Podschun, R., and U. Ullmann. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589-603. 79.Recchia, G. D., and R. M. Hall. 1995. Gene cassettes: a new class of mobile element. Microbiology 141 ( Pt 12):3015-27. 80.Roh, K. H., Y. Uh, J. S. Kim, H. S. Kim, D. H. Shin, and W. Song. 2008. First outbreak of multidrug-resistant Klebsiella pneumoniae producing both SHV-12-type extended-spectrum β-lactamase and DHA-1-type AmpC β-lactamase at a Korean hospital. Yonsei Med J 49:53-7. 81.Rowe-Magnus, D. A., A. M. Guerout, and D. Mazel. 1999. Super-integrons. Res Microbiol 150:641-51. 82.Rowe-Magnus, D. A., and D. Mazel. 2001. Integrons: natural tools for bacterial genome evolution. Curr Opin Microbiol 4:565-9. 83.Rowe-Magnus, D. A., and D. Mazel. 1999. Resistance gene capture. Curr Opin Microbiol 2:483-8. 84.Schmidtke, A. J., and N. D. Hanson. 2006. Model system to evaluate the effect of ampD mutations on AmpC-mediated β-lactam resistance. Antimicrob Agents Chemother 50:2030-7. 85.Shah, A. A., F. Hasan, S. Ahmed, and A. Hameed. 2004. Characteristics, epidemiology and clinical importance of emerging strains of Gram-negative bacilli producing extended-spectrum β-lactamases. Res Microbiol 155:409-21. 86.Singhal, S., T. Mathur, S. Khan, D. J. Upadhyay, S. Chugh, R. Gaind, and A. Rattan. 2005. Evaluation of methods for AmpC β-lactamase in gram negative clinical isolates from tertiary care hospitals. Indian J Med Microbiol 23:120-4. 87.Song, W., S. H. Jeong, J. S. Kim, H. S. Kim, D. H. Shin, K. H. Roh, and K. M. Lee. 2007. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC β-lactamases and extended-spectrum β-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis 57:315-8. 88.Song, W., J. S. Kim, H. S. Kim, D. Yong, S. H. Jeong, M. J. Park, and K. M. Lee. 2006. Increasing trend in the prevalence of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis 55:219-24. 89.Stokes, H. W., and R. M. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3:1669-83. 90.Su, L. H., C. Chu, A. Cloeckaert, and C. H. Chiu. 2008. An epidemic of plasmids? Dissemination of extended-spectrum cephalosporinases among Salmonella and other Enterobacteriaceae. FEMS Immunol Med Microbiol 52:155-68. 91.Thomson, J. M., and R. A. Bonomo. 2005. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: β-lactams in peril! Curr Opin Microbiol 8:518-24. 92.Thomson, K. S. 2001. Controversies about extended-spectrum and AmpC β-lactamases. Emerg Infect Dis 7:333-6. 93.Thomson, K. S., and C. C. Sanders. 1992. Detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother 36:1877-82. 94.Varma, J. K., R. Marcus, S. A. Stenzel, S. S. Hanna, S. Gettner, B. J. Anderson, T. Hayes, B. Shiferaw, T. L. Crume, K. Joyce, K. E. Fullerton, A. C. Voetsch, and F. J. Angulo. 2006. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002-2003. J Infect Dis 194:222-30. 95.Villa, L., C. Pezzella, F. Tosini, P. Visca, A. Petrucca, and A. Carattoli. 2000. Multiple-antibiotic resistance mediated by structurally related IncL/M plasmids carrying an extended-spectrum β-lactamase gene and a class 1 integron. Antimicrob Agents Chemother 44:2911-4. 96.Wang, J. H., Y. C. Liu, S. S. Lee, M. Y. Yen, Y. S. Chen, S. R. Wann, and H. H. Lin. 1998. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 26:1434-8. 97.Watanabe, T., and T. Fukasawa. 1961. Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J Bacteriol 81:669-78. 98.Watanabe, T., and T. Fukasawa. 1961. Episome-mediated transfer of drug resistance in Enterobacteriaceae. III. Transduotion of resistance factors. J Bacteriol 82:202-9. 99.Woodford, N., S. Reddy, E. J. Fagan, R. L. Hill, K. L. Hopkins, M. E. Kaufmann, J. Kistler, M. F. Palepou, R. Pike, M. E. Ward, J. Cheesbrough, and D. M. Livermore. 2007. Wide geographic spread of diverse acquired AmpC β-lactamases among Escherichia coli and Klebsiella spp. in the UK and Ireland. J Antimicrob Chemother 59:102-5. 100.Wu, S. W., K. Dornbusch, G. Kronvall, and M. Norgren. 1999. Characterization and nucleotide sequence of a Klebsiella oxytoca cryptic plasmid encoding a CMY-type β-lactamase: confirmation that the plasmid-mediated cephamycinase originated from the Citrobacter freundii AmpC β-lactamase. Antimicrob Agents Chemother 43:1350-7. 101.Yagi, T., J. Wachino, H. Kurokawa, S. Suzuki, K. Yamane, Y. Doi, N. Shibata, H. Kato, K. Shibayama, and Y. Arakawa. 2005. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 43:2551-8. 102.Yan, J. J., P. R. Hsueh, J. J. Lu, F. Y. Chang, J. M. Shyr, J. H. Wan, Y. C. Liu, Y. C. Chuang, Y. C. Yang, S. M. Tsao, H. H. Wu, L. S. Wang, T. P. Lin, H. M. Wu, H. M. Chen, and J. J. Wu. 2006. Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother 50:1861-4. 103.Yan, J. J., W. C. Ko, Y. C. Jung, C. L. Chuang, and J. J. Wu. 2002. Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1 β-lactamase in a university hospital in Taiwan. J Clin Microbiol 40:3121-6. 104.Yang, K., and B. J. Guglielmo. 2007. Diagnosis and treatment of extended-spectrum and AmpC β-lactamase-producing organisms. Ann Pharmacother 41:1427-35. 105.Yu, W. L., Y. C. Chuang, and J. Walther-Rasmussen. 2006. Extended-spectrum β-lactamases in Taiwan: epidemiology, detection, treatment and infection control. J Microbiol Immunol Infect 39:264-77. 106.Yu, W. L., W. C. Ko, K. C. Cheng, H. C. Lee, D. S. Ke, C. C. Lee, C. P. Fung, and Y. C. Chuang. 2006. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 42:1351-8. 107.Yusupova, G. Z., M. M. Yusupov, J. H. Cate, and H. F. Noller. 2001. The path of messenger RNA through the ribosome. Cell 106:233-41.
|