跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳孟庭
研究生(外文):Meng-Ting Wu
論文名稱:分析克雷白氏肺炎桿菌中質體媒介之AmpC乙內醯胺酶
論文名稱(外文):Characterization of plasmid-mediated AmpC-β-lactamases in Klebsiella pneumoniae
指導教授:張仲羽
指導教授(外文):Chung-Yu Chang
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:98
中文關鍵詞:AmpC乙內醯胺酶克雷白氏肺炎桿菌
外文關鍵詞:plasmid-mediated AmpC-β-lactamasesKlebsiella pneumoniae
相關次數:
  • 被引用被引用:1
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在革蘭氏陰性菌中,克雷白氏肺炎桿菌(Klebsiella pneumoniae)是一種常引起院內感染的重要病原菌。其常易引起泌尿道感染、肺炎、腦炎、敗血性休克及系統性感染等,而且在經由抗生素治療後,仍然有相當高的死亡率。近15年來,發現一種新興的克雷白氏肺炎桿菌感染症,其臨床表現為原發性肝膿瘍合併菌血症,有時更併發轉移性眼內炎或腦膜炎,此症於台灣之發生率遠高於歐美地區且逐年升高。近年來由於在感染疾病之治療及動物飼養的抗生素使用不當,造成多重抗藥性克雷白氏肺炎桿菌大幅增加,如AmpC β-lactmases菌株,又加上目前並沒有這種β-lactmases的標準偵測方法,使得AmpC β-lactmases不容易被發現,因而導致治療上的失敗。另外,integron是近年來被認為繼質體和轉位子(transposons)外,另一個與細菌獲得新抗藥性基因及抗藥性基因散佈有關的機制,因此本研究主要分析克雷白氏肺炎桿菌中的AmpC β-lactamases(AmpCs),並探討其在菌體內的存在位置及移動散佈的情形。
實驗菌株為1993年及2004年所收集自臨床檢體分離的620株克雷白氏肺炎桿菌,以紙錠瓊脂擴散法來進行藥物敏感性試驗。結果發現在620株克雷白氏肺炎桿菌中,對cefoxtin呈現非感受性的菌株有47株(約8%),進一步利用M3D、boronic acid based disk及PCR來確認AmpCs在此47株克雷白氏肺炎桿菌中的存在情形,結果分別有17株、21株及11株為AmpCs陽性,以這三種方法任一確認AmpCs呈陽性的菌株則有25株。ampC之基因型以blaACT-like、blaDHA-like及blaCMY-2-like為主。
25株確認為AmpCs陽性的菌株,其藥敏試驗結果發現這25株克雷白氏肺炎桿菌除了對cefoxitin的抗藥性較為普遍外,對β-lactam/β-lactamase inhibitor combination藥物、第三代cephalosporins、aminoglycosides、aztreonam、ciprofloxacin呈現抗藥性菌株的比例則約12%~68%間,但仍有100%、88%的菌株對meropenem、cefepime具有感受性。有22株(88%)克雷白氏肺炎桿菌帶有class 1 integron,而攜帶之基因片匣主要包括trimethoprim抗藥基因(dfr5、12、17)、streptomycin抗藥基因(aadA1、2、5)、erythromycin抗藥基因(ereA2)、aminoglycoside-6’-N-acetyltransferase酵素(aac(6’)-Il,aac(6’)IIc)與rifampin抗藥基因(arr)等藥物之抗藥基因片匣,其中以帶有dfr12-orfF-aadA2這3個片匣組合的菌株所佔比率最高。
質體分析結果發現克雷白氏肺炎桿菌體內有不同大小的質體存在。菌株攜帶的ampC基因如blaDHA-like、blaACT-like及blaCMY-2-like分別位在分子量約130、150及100 kb的質體上,而class 1 integron則多位於30∼165 kb的質體上。接合試驗結果發現攜帶blaACT-like的質體不具轉移性,而blaCMY-2-like的質體則有轉移性,可一併散佈轉移性質體所攜帶的抗藥基因。此外,有2株未知的ampC基因與class 1 integron同時位在分子量約159 kb的質體上,並可一起隨此質體轉移。
研究結果顯示,以boronic acid based disk偵測克雷白氏肺炎桿菌中質體所表現的AmpCs有較高的敏感性,擁有AmpCs之克雷白氏肺炎桿菌大多呈現多重抗藥性,同時ampC基因可藉由轉移性質體在菌株間水平式轉移來傳遞抗藥性基因,顯示ampC基因在克雷白氏肺炎桿菌抗藥性上扮演著不可忽視的角色。
Klebsiella pneumoniae is one of the common pathogens causing community-acquired and nosocomial infections. It usually causes a wide spectrum of infections, including septicemia, pneumonia, urinary tract infection, meningitis and systemic infection. The high mortality still happened even if treatment of antibiotic. In the past 15 years, a new type of invasive K. pneumoniae disease has emerged in Taiwan that typically present as community-acquired primary liver abscess with metastatic meningitis and endophthalmitis. The high mortality rate and high incidence of K. pneumoniae pyogenic liver abscess in Taiwan make further investigation necessary. Improper use of various antibiotics for the treatment of diseases resulted in an increase of K. pneumoniae resistant to multiple drug. AmpC β-lactamases are cephalosporinases that confer resistance to a wide variety of β-lactam drugs and that may thereby create serious therapeutic problems. Currently, there are no recommendations available from the Clinical and Laboratory Standards Institute (CLSI) for detection of organisms producing AmpC β-lactamases(AmpCs)and often leaving clinicians with limited therapeutic options. Apart from R-plasmids and transposons, integron are known to be another mechanism for acquisition and dissemination of resistance genes among gram-negative bacteria. Therefore, this study attempts to detect AmpCs in K. pneumoniae. Class 1 integrons and plasmids were also characterized to further ascertain their roles in dissemination of AmpCs.

A total of 620 cinical isolates of K. pneumoniae were collected from
KMUH in 1993 and 2004. 47 K. pneumoniae isolates showing non-susceptible to cefoxitin (inhibition zone less than 18 mm) were tested further to confirm the presence of AmpC β-lactamases. AmpCs were confirmed in 17, 21 and 11 of the isolates by modified three-dimensional (M3D), boronic acid based disk test and PCR, respectively. Strains of positive for any one of the three tests included 25 K. pneumoniae isolates. PCR analysis revealed that blaACT-like、blaDHA-like and blaCMY-2-like were found in 1, 9 and 1 isolates, respectively.
Among 25 AmpCs-producing K. pneumoniae isolates, antimicrobial susceptibility tests showed that susceptibility rate to cefepime and meropenem is 88 and 100%, respectively. 12-68% of the isolates were resistance to β-lactam/β-lactamase inhibitor combination, 3rd-cephalosporins, aminoglycosides, aztreonam, and ciprofloxacin. The percentage of class 1 integrons in these 25 isolates is 88%(22 islaotes). The gene cassettes carried by integrons included those encoding resistance to trimethoprim (dfr5, 12 and 17), streptomycin (aadA1, 2, 5), erythromycin (ereA2), aminoglycoside-6’-N-acetyltransferase (aac(6’)-Il, aac(6’)IIc), rifampin (arr). Most of the class 1 integrons carried dfr12, orfF and aadA2 cassettes.
Results from Southern hybridization pointed out there existed plasmids of different sizes. ampC genes such as blaDHA-like, blaACT-like and blaCMY-2-like were located on plasmids approximately of 130, 150 and 100 kb, respectively. Class 1 integrons were located on the plasmids ranging from 30 to 165 kb. In addition, conjugation experiments suggested that blaACT-like was located on non-transferable plasmid. On the other hand, an isolate producing CMY-2-like AmpCs possessed a plasmid of 100 kb involving in the transfer of the blaCMY-2 like gene, indicating the plasmid-mediated horizontal transfer of blaCMY-2 like gene. However, the transfer of ampC genes mediated by plasmids did not accompany class 1 integron except two isolates carrying unknown ampC genes.
This study demonstrated that the boronic acid test is more sensitive to detect AmpCs in K. pneumoniae. AmpCs-producing K. pneumoniae isolates are often multidrug-resistant. Plasmid-mediated transfer of ampC genes can lead to the dissemination of antibiotic resistance to diverse bacterial populations. Thus, the ampC may play an important role in multi-resistance of K. pneumoniae.
中文摘要 1
英文摘要 4

緒論
(一)前言 7
(二)克雷白氏肺炎桿菌(Klebsiella pneumoniae) 8
(三)抗生素與細菌抗藥性之機轉 10
(四)乙內醯胺酶(β-lactamases) 15
(五)AmpC β-lactamases 18
(六)抗藥性散佈之新機制:Integron 26
(七)研究目的 29

材料與方法
(一)實驗菌株之收集 30
(二)藥物感受性試驗(藥敏試驗) 31
(三)克雷白氏肺炎桿菌AmpCβ-lactamas偵測 32
(四)Class 1 integron之偵測 37
(五)Class 1 integron基因片匣之分析 38
(六)ampC基因及class 1 integron於菌株內存在位置之分析 42
(七)ampC基因與class 1 integron轉移之分析—接合試驗 48

結果
(一)克雷白氏肺炎桿菌對cefoxitin之感受性 51
(二)克雷白氏肺炎桿菌之AmpCs表現型之偵測 51
(三)克雷白氏肺炎桿菌之ampC基因型之偵測 52
(四)攜帶AmpCs之克雷白氏肺炎桿菌中抗藥情形 52
(五)Class 1 integron於攜帶AmpCs之克雷白氏肺炎
桿菌內存在情形及所攜帶之基因片匣 53
(六)AmpCs與菌株抗藥性及class 1 integron之相關性 55
(七)ampC基因與class 1 integron於菌體內存在位置之分析 56
(八)ampC基因與class 1 integron轉移情形 57

討論
(一)克雷白氏肺炎桿菌對cefoxitin之抗藥情形 59
(二)克雷白氏肺炎桿菌之AmpCs 60
(三)攜帶AmpCs之克雷白氏肺炎桿菌抗藥情形 62
(四)AmpCs與菌株抗藥性及class 1 integron之相關性 63
(五)ampC基因與class 1 integron於菌體內存在位置及轉
移之分析 64
(六)結論 66
表 67
圖 77
參考文獻 82
附錄
附圖一:乙內醯胺酶的分子特性與功能 90
附圖二:Integron結構圖 91
附圖三:Class 1 integron結構圖 92
附圖四:Integron主導之特定位置重組作用 93
1.Alvarez, M., J. H. Tran, N. Chow, and G. A. Jacoby. 2004. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob Agents Chemother 48:533-7.
2.Ambler, R. P. 1980. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321-31.
3.Ananthan, S., and A. Subha. 2005. Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and Escherichia coli. Indian J Med Microbiol 23:20-3.
4.Babic, M., A. M. Hujer, and R. A. Bonomo. 2006. What''s new in antibiotic resistance? Focus on β-lactamases. Drug Resist Updat 9:142-56.
5.Barnaud, G., G. Arlet, C. Verdet, O. Gaillot, P. H. Lagrange, and A. Philippon. 1998. Salmonella enteritidis: AmpC plasmid-mediated inducible β-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob Agents Chemother 42:2352-8.
6.Bass, L., C. A. Liebert, M. D. Lee, A. O. Summers, D. G. White, S. G. Thayer, and J. J. Maurer. 1999. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob Agents Chemother 43:2925-9.
7.Bauernfeind, A., Y. Chong, and K. Lee. 1998. Plasmid-encoded AmpC β-lactamases: how far have we gone 10 years after the discovery? Yonsei Med J 39:520-5.
8.Bauernfeind, A., Y. Chong, and S. Schweighart. 1989. Extended broad spectrum β-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17:316-21.
9.Bergstrom, S., O. Olsson, and S. Normark. 1982. Common evolutionary origin of chromosomal β-lactamase genes in enterobacteria. J Bacteriol 150:528-34.
10.Black, J. A., E. S. Moland, and K. S. Thomson. 2005. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol 43:3110-3.
11.Black, J. A., K. S. Thomson, J. D. Buynak, and J. D. Pitout. 2005. Evaluation of β-lactamase inhibitors in disk tests for detection of plasmid-mediated AmpC β-lactamases in well-characterized clinical strains of Klebsiella spp. J Clin Microbiol 43:4168-71.
12.Brown, A. W., S. C. Rankin, and D. J. Platt. 2000. Detection and characterisation of integrons in Salmonella enterica serotype enteritidis. FEMS Microbiol Lett 191:145-9.
13.Bush, K. 2001. New β-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 32:1085-9.
14.Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211-33.
15.Chambers, H. F. 1997. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 10:781-91.
16.Chang, S. C., C. T. Fang, P. R. Hsueh, Y. C. Chen, and K. T. Luh. 2000. Klebsiella pneumoniae isolates causing liver abscess in Taiwan. Diagn Microbiol Infect Dis 37:279-84.
17.Charlotte Verdet, Y. B., Vale´rie Gautier, Olivier Adam,, and a. G. A. Zahia Ould-Hocine. 2006. Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: genetic organization of the ampC and ampR genes originating from Morganella morganii. Antimicrob Agents Chemother 50:607–17.
18.Chaves, J., M. G. Ladona, C. Segura, A. Coira, R. Reig, and C. Ampurdanes. 2001. SHV-1 β-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob Agents Chemother 45:2856-61.
19.Chou, H. C., C. Z. Lee, L. C. Ma, C. T. Fang, S. C. Chang, and J. T. Wang. 2004. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 72:3783-92.
20.Clewell, D. B., and C. Gawron-Burke. 1986. Conjugative transposons and the dissemination of antibiotic resistance in streptococci. Annu Rev Microbiol 40:635-59.
21.Clinical and Laboratory Standards Institute. 2006. Performance standards for antimicrobial disk susceptibility tests;Approved Standard—Ninth Edition. M2-A9. CLSI, Wayne PA, USA.
22.Collis, C. M., and R. M. Hall. 1995. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother 39:155-62.
23.Collis, C. M., and R. M. Hall. 1992. Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol Microbiol 6:2875-85.
24.Collis, C. M., and R. M. Hall. 1992. Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J Bacteriol 174:1574-85.
25.Coudron, P. E. 2005. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol 43:4163-7.
26.Coudron, P. E., E. S. Moland, and K. S. Thomson. 2000. Occurrence and detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. J Clin Microbiol 38:1791-6.
27.Dalsgaard, A., A. Forslund, N. V. Tam, D. X. Vinh, and P. D. Cam. 1999. Cholera in Vietnam: changes in genotypes and emergence of class I integrons containing aminoglycoside resistance gene cassettes in Vibrio cholerae O1 strains isolated from 1979 to 1996. J Clin Microbiol 37:734-41.
28.Doi, Y., and D. L. Paterson. 2007. Detection of plasmid-mediated class C β-lactamases. Int J Infect Dis 11:191-7.
29.El-Mansi, M., K. J. Anderson, C. A. Inche, L. K. Knowles, and D. J. Platt. 2000. Isolation and curing of the Klebsiella pneumoniae large indigenous plasmid using sodium dodecyl sulphate. Res Microbiol 151:201-8.
30.Fang, C. T., Y. P. Chuang, C. T. Shun, S. C. Chang, and J. T. Wang. 2004. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199:697-705.
31.Fluit, A. C., and F. J. Schmitz. 1999. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 18:761-70.
32.Fluit, A. C., and F. J. Schmitz. 2004. Resistance integrons and super-integrons. Clin Microbiol Infect 10:272-88.
33.Gaillot, O., C. Clement, M. Simonet, and A. Philippon. 1997. Novel transferable β-lactam resistance with cephalosporinase characteristics in Salmonella enteritidis. J Antimicrob Chemother 39:85-7.
34.Gazouli, M., L. S. Tzouvelekis, E. Prinarakis, V. Miriagou, and E. Tzelepi. 1996. Transferable cefoxitin resistance in enterobacteria from Greek hospitals and characterization of a plasmid-mediated group 1 β-lactamase (LAT-2). Antimicrob Agents Chemother 40:1736-40.
35.Georgopapadakou, N. H. 1993. Penicillin-binding proteins and bacterial resistance to β-lactams. Antimicrob Agents Chemother 37:2045–53.
36.Giamarellou, H. 2005. Multidrug resistance in gram-negative bacteria that produce extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect 11 Suppl 4:1-16.
37.Girlich, D., A. Karim, C. Spicq, and P. Nordmann. 2000. Plasmid-mediated cephalosporinase ACC-1 in clinical isolates of Proteus mirabilis and Escherichia coli. Eur J Clin Microbiol Infect Dis 19:893-5.
38.Goffin, C., and J. M. Ghuysen. 1998. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079-93.
39.Hall, R. M. 1997. Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. Ciba Found Symp 207:192-202.
40.Hall, R. M., and C. M. Collis. 1998. Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Updat 1:109-19.
41.Hall, R. M., and C. M. Collis. 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol 15:593-600.
42.Hall, R. M., and H. W. Stokes. 1993. Integrons: novel DNA elements which capture genes by site-specific recombination. Genetica 90:115-32.
43.Hanson, N. D. 2003. AmpC β-lactamases: what do we need to know for the future? J Antimicrob Chemother 52:2-4.
44.Hanson, N. D., and C. C. Sanders. 1999. Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5:881-94.
45.Heritage, J., F. H. M''Zali, D. Gascoyne-Binzi, and P. M. Hawkey. 1999. Evolution and spread of SHV extended-spectrum β-lactamases in gram-negative bacteria. J Antimicrob Chemother 44:309-18.
46.Hooper, D. C. 2005. Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Clin Infect Dis 40:1811-7.
47.Horii, T., Y. Arakawa, M. Ohta, T. Sugiyama, R. Wacharotayankun, H. Ito, and N. Kato. 1994. Characterization of a plasmid-borne and constitutively expressed blaMOX-1 gene encoding AmpC-type β-lactamase. Gene 139:93-8.
48.Hsueh, P. R., C. Y. Liu, and K. T. Luh. 2002. Current status of antimicrobial resistance in Taiwan. Emerg Infect Dis 8:132-7.
49.Jacobs, C., J. M. Frere, and S. Normark. 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell 88:823-32.
50.Jacobs, C., B. Joris, M. Jamin, K. Klarsov, J. Van Beeumen, D. Mengin-Lecreulx, J. van Heijenoort, J. T. Park, S. Normark, and J. M. Frere. 1995. AmpD, essential for both β-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 15:553-9.
51.Jacoby, G. A., D. M. Mills, and N. Chow. 2004. Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:3203-6.
52.Jacoby, G. A., and L. S. Munoz-Price. 2005. The new β-lactamases. N Engl J Med 352:380-91.
53.Jacoby, G. A., K. E. Walsh, and V. J. Walker. 2006. Identification of extended-spectrum, AmpC, and carbapenem- hydrolyzing β-lactamases in Escherichia coli and Klebsiella pneumoniae by disk tests. J Clin Microbiol 44:1971-6.
54.Kabha, K., L. Nissimov, A. Athamna, Y. Keisari, H. Parolis, L. A. Parolis, R. M. Grue, J. Schlepper-Schafer, A. R. Ezekowitz, D. E. Ohman, and et al. 1995. Relationships among capsular structure, phagocytosis, and mouse virulence in Klebsiella pneumoniae. Infect Immun 63:847-52.
55.Kado, C. I., and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365-73.
56.Ko, W. C., D. L. Paterson, A. J. Sagnimeni, D. S. Hansen, A. Von Gottberg, S. Mohapatra, J. M. Casellas, H. Goossens, L. Mulazimoglu, G. Trenholme, K. P. Klugman, J. G. McCormack, and V. L. Yu. 2002. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis 8:160-6.
57.Koeleman, J. G., J. Stoof, M. W. Van Der Bijl, C. M. Vandenbroucke-Grauls, and P. H. Savelkoul. 2001. Identification of epidemic strains of Acinetobacter baumannii by integrase gene PCR. J Clin Microbiol 39:8-13.
58.Levesque, C., L. Piche, C. Larose, and P. H. Roy. 1995. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 39:185-91.
59.Li, L., and C. K. Lim. 2000. A novel large plasmid carrying multiple β-lactam resistance genes isolated from a Klebsiella pneumoniae strain. J Appl Microbiol 88:1038-48.
60.Li, Y., Q. Li, Y. Du, X. Jiang, J. Tang, J. Wang, G. Li, and Y. Jiang. 2008. Prevalence of plasmid-mediated AmpC β-lactamases in a Chinese university hospital from 2003 to 2005: first report of CMY-2-type AmpC β-lactamase resistance in China. J Clin Microbiol 46:1317-21.
61.Lindquist, S., F. Lindberg, and S. Normark. 1989. Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC β-lactamase gene. J Bacteriol 171:3746-53.
62.Livermore, D. M. 1995. β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557-84.
63.Lupski, J. R. 1987. Molecular mechanisms for transposition of drug-resistance genes and other movable genetic elements. Rev Infect Dis 9:357-68.
64.Maguire, A. J., D. F. Brown, J. J. Gray, and U. Desselberger. 2001. Rapid screening technique for class 1 integrons in Enterobacteriaceae and nonfermenting gram-negative bacteria and its use in molecular epidemiology. Antimicrob Agents Chemother 45:1022-9.
65.Maxwell, A. 1997. DNA gyrase as a drug target. Trends Microbiol 5:102-9.
66.McDonald, L. C., M. T. Chen, T. L. Lauderdale, and M. Ho. 2001. The use of antibiotics critical to human medicine in food-producing animals in Taiwan. J Microbiol Immunol Infect 34:97-102.
67Nasim, K., S. Elsayed, J. D. Pitout, J. Conly, D. L. Church, and D. B. Gregson. 2004. New method for laboratory detection of AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae. J Clin Microbiol 42:4799-802.
68.Netzel, T. C., I. Jindani, N. Hanson, B. M. Turner, L. Smith, and K. H. Rand. 2007. The AmpC inhibitor, Syn2190, can be used to reveal extended-spectrum β-lactamases in Escherichia coli. Diagn Microbiol Infect Dis 58:345-8.
69.Neu, H. C. 1992. The crisis in antibiotic resistance. Science 257:1064-73.
70.Papanicolaou, G. A., A. A. Medeiros, and G. A. Jacoby. 1990. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 34:2200-9.
71.Paterson, D. L., and R. A. Bonomo. 2005. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18:657-86.
72.Pepperell, C., J. V. Kus, M. A. Gardam, A. Humar, and L. L. Burrows. 2002. Low-virulence Citrobacter species encode resistance to multiple antimicrobials. Antimicrob Agents Chemother 46:3555-60.
73.Perera, G., and R. Hay. 2005. A guide to antibiotic resistance in bacterial skin infections. J Eur Acad Dermatol Venereol 19:531-45.
74.Perez-Perez, F. J., and N. D. Hanson. 2002. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153-62.
75.Philippon, A., G. Arlet, and G. A. Jacoby. 2002. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother 46:1-11.
76.Pitout, J. D., P. Nordmann, K. B. Laupland, and L. Poirel. 2005. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemother 56:52-9.
77.Pitout, J. D., C. C. Sanders, and W. E. Sanders, Jr. 1997. Antimicrobial resistance with focus on β-lactam resistance in gram-negative bacilli. Am J Med 103:51-9.
78.Podschun, R., and U. Ullmann. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589-603.
79.Recchia, G. D., and R. M. Hall. 1995. Gene cassettes: a new class of mobile element. Microbiology 141 ( Pt 12):3015-27.
80.Roh, K. H., Y. Uh, J. S. Kim, H. S. Kim, D. H. Shin, and W. Song. 2008. First outbreak of multidrug-resistant Klebsiella pneumoniae producing both SHV-12-type extended-spectrum β-lactamase and DHA-1-type AmpC β-lactamase at a Korean hospital. Yonsei Med J 49:53-7.
81.Rowe-Magnus, D. A., A. M. Guerout, and D. Mazel. 1999. Super-integrons. Res Microbiol 150:641-51.
82.Rowe-Magnus, D. A., and D. Mazel. 2001. Integrons: natural tools for bacterial genome evolution. Curr Opin Microbiol 4:565-9.
83.Rowe-Magnus, D. A., and D. Mazel. 1999. Resistance gene capture. Curr Opin Microbiol 2:483-8.
84.Schmidtke, A. J., and N. D. Hanson. 2006. Model system to evaluate the effect of ampD mutations on AmpC-mediated β-lactam resistance. Antimicrob Agents Chemother 50:2030-7.
85.Shah, A. A., F. Hasan, S. Ahmed, and A. Hameed. 2004. Characteristics, epidemiology and clinical importance of emerging strains of Gram-negative bacilli producing extended-spectrum β-lactamases. Res Microbiol 155:409-21.
86.Singhal, S., T. Mathur, S. Khan, D. J. Upadhyay, S. Chugh, R. Gaind, and A. Rattan. 2005. Evaluation of methods for AmpC β-lactamase in gram negative clinical isolates from tertiary care hospitals. Indian J Med Microbiol 23:120-4.
87.Song, W., S. H. Jeong, J. S. Kim, H. S. Kim, D. H. Shin, K. H. Roh, and K. M. Lee. 2007. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC β-lactamases and extended-spectrum β-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis 57:315-8.
88.Song, W., J. S. Kim, H. S. Kim, D. Yong, S. H. Jeong, M. J. Park, and K. M. Lee. 2006. Increasing trend in the prevalence of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis 55:219-24.
89.Stokes, H. W., and R. M. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3:1669-83.
90.Su, L. H., C. Chu, A. Cloeckaert, and C. H. Chiu. 2008. An epidemic of plasmids? Dissemination of extended-spectrum cephalosporinases among Salmonella and other Enterobacteriaceae. FEMS Immunol Med Microbiol 52:155-68.
91.Thomson, J. M., and R. A. Bonomo. 2005. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: β-lactams in peril! Curr Opin Microbiol 8:518-24.
92.Thomson, K. S. 2001. Controversies about extended-spectrum and AmpC β-lactamases. Emerg Infect Dis 7:333-6.
93.Thomson, K. S., and C. C. Sanders. 1992. Detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother 36:1877-82.
94.Varma, J. K., R. Marcus, S. A. Stenzel, S. S. Hanna, S. Gettner, B. J. Anderson, T. Hayes, B. Shiferaw, T. L. Crume, K. Joyce, K. E. Fullerton, A. C. Voetsch, and F. J. Angulo. 2006. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002-2003. J Infect Dis 194:222-30.
95.Villa, L., C. Pezzella, F. Tosini, P. Visca, A. Petrucca, and A. Carattoli. 2000. Multiple-antibiotic resistance mediated by structurally related IncL/M plasmids carrying an extended-spectrum β-lactamase gene and a class 1 integron. Antimicrob Agents Chemother 44:2911-4.
96.Wang, J. H., Y. C. Liu, S. S. Lee, M. Y. Yen, Y. S. Chen, S. R. Wann, and H. H. Lin. 1998. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 26:1434-8.
97.Watanabe, T., and T. Fukasawa. 1961. Episome-mediated transfer of drug resistance in Enterobacteriaceae. I. Transfer of resistance factors by conjugation. J Bacteriol 81:669-78.
98.Watanabe, T., and T. Fukasawa. 1961. Episome-mediated transfer of drug resistance in Enterobacteriaceae. III. Transduotion of resistance factors. J Bacteriol 82:202-9.
99.Woodford, N., S. Reddy, E. J. Fagan, R. L. Hill, K. L. Hopkins, M. E. Kaufmann, J. Kistler, M. F. Palepou, R. Pike, M. E. Ward, J. Cheesbrough, and D. M. Livermore. 2007. Wide geographic spread of diverse acquired AmpC β-lactamases among Escherichia coli and Klebsiella spp. in the UK and Ireland. J Antimicrob Chemother 59:102-5.
100.Wu, S. W., K. Dornbusch, G. Kronvall, and M. Norgren. 1999. Characterization and nucleotide sequence of a Klebsiella oxytoca cryptic plasmid encoding a CMY-type β-lactamase: confirmation that the plasmid-mediated cephamycinase originated from the Citrobacter freundii AmpC β-lactamase. Antimicrob Agents Chemother 43:1350-7.
101.Yagi, T., J. Wachino, H. Kurokawa, S. Suzuki, K. Yamane, Y. Doi, N. Shibata, H. Kato, K. Shibayama, and Y. Arakawa. 2005. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 43:2551-8.
102.Yan, J. J., P. R. Hsueh, J. J. Lu, F. Y. Chang, J. M. Shyr, J. H. Wan, Y. C. Liu, Y. C. Chuang, Y. C. Yang, S. M. Tsao, H. H. Wu, L. S. Wang, T. P. Lin, H. M. Wu, H. M. Chen, and J. J. Wu. 2006. Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother 50:1861-4.
103.Yan, J. J., W. C. Ko, Y. C. Jung, C. L. Chuang, and J. J. Wu. 2002. Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1 β-lactamase in a university hospital in Taiwan. J Clin Microbiol 40:3121-6.
104.Yang, K., and B. J. Guglielmo. 2007. Diagnosis and treatment of extended-spectrum and AmpC β-lactamase-producing organisms. Ann Pharmacother 41:1427-35.
105.Yu, W. L., Y. C. Chuang, and J. Walther-Rasmussen. 2006. Extended-spectrum β-lactamases in Taiwan: epidemiology, detection, treatment and infection control. J Microbiol Immunol Infect 39:264-77.
106.Yu, W. L., W. C. Ko, K. C. Cheng, H. C. Lee, D. S. Ke, C. C. Lee, C. P. Fung, and Y. C. Chuang. 2006. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 42:1351-8.
107.Yusupova, G. Z., M. M. Yusupov, J. H. Cate, and H. F. Noller. 2001. The path of messenger RNA through the ribosome. Cell 106:233-41.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top