1.Lindley, C., et al., Neoplastic disorders and their treatment: general principles, in Applied Therapeutics: The Clinical Use of Drug, Lippincoot Williams & Wilkins.
2.Baguley, B.C., Denny, W.A., Atwell, G.J., Finlay, G.J., Rewcastle, G.W., Twigden, S.J., Wilson, W.R., Synthesis, antitumor activity, and DNA binding properties of a new derivative of amsacrine, N-5-dimethyl-9-[(2-methoxy-4-methylsulfonylamino)phenylamino]-4-acridinecarbixamide. Cancer Research, 1984. 44: 3245-3251.
3.Pegg, D.G., Watkins, J.R., Graziano, M.J., McKenna, M.J., Subchronic intravenous toxicity of the antineoplastic drug, amsacrine, in male Wistar rats. Fundamental and Applied Toxicology, 1996. 32: 45-52.
4.Huang, Y.B., Wu, P.C., Hsu, M.W., Chen, Y.L., Tzeng, C.C., Tsai, Y.H., Highly sensitive analysis of the anti-tumor agent 1-[4-(furo[2,3-b]-quinolin-4-ylamino)phenyl]ethanone in rat plasma by high-performance liquid chromatography using electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 2005. 38: 551-555.
5.Zhao, Y.L., Chen, Y.L., Tzeng, C.C., Synthesis and cytotoxic evaluation of certain 4-(phenylamino)furo[2,3-b]quinoline and 2-(furan-2-yl)-4-(phenyl-amino)quinoline derivatives. Chemistry & Biodiversity, 2005. 2: 205-214.
6.Chen, I.L., Chen, Y.L., Tzeng, C.C., Synthesis and cytotoxic evaluation of some 4-anilinofuran[2,3-b]quinoline derivatives. Helvetica Chimica Acta 2002. 85: 2214-2221.
7.Shenoy, V.S., Vijay, I.K., Murthy, R.S.R., Tumor targeting: biological factors and formulation advances in injectable lipid nanoparticles. Journal of Pharmacy and Pharmacology, 2005. 57: 411-421.
8.Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, W.G., Griffith, L., Torchilin, V.P., Jain, R.K., Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95: 4607-4612.
9.Wang, H.L., Bendayam, R., Rauth, A.M., Li, Y., Wu, X.Y., Chemotherapy with anticancer drugs encapsulate in solid lipid nanoparticles. Advanced Drug Delivery Reviews 2007. 59: 491-504.
10.Olbrich, C., Müller, R.H., Enzymatic degradation of SLN - effect of surfactant and surfactant mixtures. Internation Journal of Pharmaceutics, 1999. 180: 31-39.
11.Li, Y., Dong, L., Jia, A., Chang, X., Xue, H., Preparation and characterization of solid lipid nanoparticles loaded traditional chinese medicine. International Journal of Biological Macromolecules, 2006. 38: 296-299.
12.Zhang, D., Tan, T., Gao, L., Preparation of oridonin-loaded solid lipid nanoparticles and studies on the in vitro and in vivo. Nanotechnology, 2006. 17: 5821-5828.
13.Kumar, V.V., Chandrasekar, D., Ramakrishna, S., Kishan, V., Rao, Y.M., Diwan, P.V., Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. International Journal of Pharmaceutics, 2007. 335: 167-175.
14.Wissing, S.A., Kayser, O., Müller, R.H., Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 2004. 56: 1257-1272.
15.Müller, R.H., Mäder, K., Gohla, S., Solid lipid nanopartivles (SLN) for controlled drug delivery - a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 50: 161-177.
16.Mehnert, W., Mäder, K., Solid lipid nanoparticles production, characterization and applications. Advanced Drug Delivery Reviews, 2001. 47: 165-196.
17.Manjunath, K., Venkateswarlu, V., Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. Journal of Drug Targeting, 2006. 14: 632-645.
18.Owens Ш, D.E., Peppas, N.A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Internation Journal of Pharmaceutics, 2006. 307: 93-102.
19.Fundarò, A., Cavalli, R., Bargoni, A., Vighetto, D., Zara, G.P., Gasco, M.R., Non-stealth and stealth solid lipid nanoparticles (SLN)carrying doxorubicin: pharmacokinetics and tissue distribution after I.V. administration to rats. Pharmacological Research, 2000. 42: 337-343.
20.Takeuchi, H., Kojima, H., Yamamoto, H., Kawashima, Y., Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. Journal of Controlled Release, 2001. 75: 83-91.
21.Chen, D.B., Yang, T.Z., Lu, W.L., Zhang, Q., In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chemical & Pharmaceutical Bulletin, 2001. 49: 1444-1447.
22.Hu, Y., Xie, J., Tong, Y.W., Wang, C.H., Effect of PEG conformation amd particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Journal of Controlled Release, 2007. 118: 7-17.
23.Manjunath, K., Venkateswarlu, V., Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. Journal of Controlled Release, 2005. 107: 215-228.
24.Ye, J., Wang, Q., Zhou, X., Zhang, N., Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. International Journal of Pharmaceutics, 2008. 352: 273-279.
25.許銘偉, 新合成抗癌化合物4-Anilinofuro[2,3-b]quinoline衍生物之藥物動力學研究, 高雄醫學大學藥學研究所 碩士論文. 2004.26.Kestell, P., Paxton, J.W., Evans, P.C., Young, D., Jurlina, J.L., Robertson, I.G.C., Baguley, B.C., Disposition of amsacrine and its analogue 9-({2-methoxy-4-[(methylsulfonyl)-amino]phenyl}amino-N,5-dimethyl-4-acridinecarboxamide(CI-921)in plasma, liver and Lewis lung tumors in mice. Cancer Research, 1990. 50: 503-508.
27.經濟部標準檢驗局, 檢驗技術簡訊. 2004. 7.
28.劉雅婷, 新合成抗癌化合物,PK-L1及其固體脂質粒子奈米化處方在小鼠體內分佈及其藥物動力學研究, 高雄醫學大學臨床藥學研究所 碩士論文. 2007.29.Ishida, T., Ichikawa, T., Ichihara, M., Sadzuka, Y., Kiwada, H., Effect of the physicochemical properties of initially injected liposomes on the clearence of subsequently injected PEGylated liposomes in mice. Journal of Controlled Release, 2004. 95: 403-412.