(3.238.7.202) 您好!臺灣時間:2021/03/04 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳昇鴻
研究生(外文):Sheng-Hung Chen
論文名稱(外文):Cognition Map of Alternative Fuel Vehicles Using DEMATEL Method
指導教授:林成蔚林成蔚引用關係
指導教授(外文):Cheng-Wei Lin
學位類別:碩士
校院名稱:開南大學
系所名稱:物流與航運管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:69
中文關鍵詞:多目標決策決策實驗室分析法替代燃料油電混合車輛天然氣車輛燃料乙醇燃料甲醇生質柴油
外文關鍵詞:Multiple Criteria Decision MakingDEMATELalternative fuelsHEVsCNGmethanol vehiclesethanol vehiclesbio-diesel vehiclesmarketing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:3
環境保護的議題因為全球暖化而受到熱烈的討論,而全球氣候變遷組織(IPCC, Intergovernmental Panel on Climate Change)證實二氧化碳排放是造成全球暖化的一項原因,然而二氧化碳排放量的主要來源之一是使用石化燃料之車輛,根據此一原因替代燃料車輛成為一項熱門的議題,許多汽車製造商、研究人員以及學者致力於替代燃料車輛之發展。根據近期的研究指出使用替代燃料車輛可以降低或者避免二氧化碳的排放,目前已有許多種類的替代燃料用於車輛上,如:電力/油電混合、燃料電池/氫氣、天然瓦斯和生質柴油等,不同種類的替代燃料有不同的特性需要被注意,此點對於消費者或使用者而言是難以判斷並且選擇的,故本研究之目的在於建立評估模式來幫助消費者或使用者評估選擇替代燃料車輛的種類。此一問題必須考慮到每種替代燃料不同之特性,因此必須同時考慮許多評估構面及準則,本研究採用決策實驗室分析法(DEMATEL, Decision-Making Trial and Evaluation Laboratory)來處理替代燃料車輛之評估準則極其重要程度及其相關聯性。DEMATEL法已被成功應用於解決許多不同層面的問題,如:能源議題、行銷決策、線上學習、控制系統與安全性之問題等(Chiu et al., 2006; Hori et al, 1999)。本研究結果指出前三項關鍵影響因素為”新車價格”、”可行駛距離”以及”燃料效率”,而”空氣污染”則是主要影響因素;”可行駛距離”則為主要被影響因素。因此本研究根據研究結果建議汽車製造商、研究人員以及學者必須謹慎的評估替代燃料的不同特性,價格為消費者以及使用者評估的首要關鍵影響因素,而燃料效率不僅是關鍵影響因素更會影響可行駛距離;空氣污染為主要影響因素代表儘管價格較高與燃料效率較低,但仍可能被消費者或使用者接受。目前世界上似乎仍未出現完美的替代燃料車輛,但致力研究無排放污染車輛將能夠減少許多替代燃料之缺點。
Environment protection has taken serious notice of global warming. IPCC (Intergovernmental Panel on Climate Change) has proved that the CO2 is one of the factors for global warming. Furthermore, the majority of this emission comes from the vehicles using petroleum fuels. For this reason, alternative fuels become a very popular issue. There are so many automakers and researchers endeavoring in alternative fuel vehicles (AFVs) development. Related researches reveal that using AFVs can avoid the emission of CO2. There already have been many types of alternative fuels used in vehicles, such as electric vehicles (EVs)/ hybrid electric vehicles (HEVs), fuel cell (hydrogen) vehicles, natural gas vehicles (CNG), methanol vehicles, ethanol vehicles, and bio-diesel vehicles etc. Different types of alternative fuels have different characteristics to which attention should be paid. It is difficult for users to identify which one is the best choice for them to use. The purpose of this study is to construct an evaluation model helping users making a decision with AFVs. This problem concerns the characteristics of each alternative fuel. A lot of criteria and aspects related to the alternative fuels should be considered at the same time. In this study, we try to apply Decision-Making Trial and Evaluation Laboratory (DEMATEL) method to deal with the importance and causal relationships among the evaluation factors of AFVs. DEMATEL method has been successfully applied in many situations, such as energy, marketing strategies, e-learning evaluation, control systems and safety problems (Chiu et al., 2006; Hori & Shimizu, 1999). Results shows the top three critical evaluation criteria are “new car cost”, “cruising range”, and “fuel efficiency”; “air pollution” is the key cause factor influencing others; and “cruising range” is the key effect factor influenced by others. It is no accident cost is the most critical factor for users. Consequently, it is suggested to automakers and researchers to carefully analyze characteristics of each alternative fuel. Fuel efficiency is not only focused by users, it also will affect the cruising range. Air pollution is what users care about, so even zero emission vehicles (ZEVs), which cost higher but have lower fuel efficiency, could be accepted. There seems to be no perfect alternative fuel vehicle, but to endeavor on ZFVs will reduce some disadvantages.
Contents
Special Thanks..................................................................................................Ⅰ
Chinese Abstract...............................................................................................Ⅱ
English Abstract................................................................................................Ⅲ
Contents………................................................................................................Ⅳ
Figure Contents.................................................................................................Ⅵ
Table Contents..................................................................................................Ⅶ
Chapter 1 Introduction..................................................................1
1.1 Research Motivation and Background.................................................4
1.2 Research Framework and Overview of Thesis.....................................9
1.3 Research Content................................................................................10
1.4 Research Flowchart.............................................................................12
Chapter 2 Alternative solutions..................................................14
2.1 Electric vehicles (EVs)/ hybrid electric vehicles (HEVs)...................16
2.2 Fuel cell (hydrogen) vehicles/(FCVs).................................................17
2.3 Natural gas vehicles............................................................................19
2.4 Methanol vehicles...............................................................................20
2.5 Ethanol vehicles..................................................................................22
2.6 Bio-diesel vehicles..............................................................................24
Chapter 3 The research method ……….....................................31
Chapter 4 A case study for evaluating alternative fuel vehicles…….36
4.1 Building factors consideration in new alternative fuel vehicles........36
4.2 Constructing the influence maps among evaluation factors...............42
4.3 Results and analyses............................................................................44
Chapter 5 Conclusions.................................................................53
Chapter 6 Suggestion...................................................................55
References.....................................................................................56
Appendix A. DEMATEL Questionnaire....................................64
References
Bamitt, R., Chandler K., 2006. New York city hybrid and CNG transit buses final evaluation results. National renewable energy laboratory.
Chalk, S. G., Miller, J. F., 2006. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. Journal of Power Sources, 159 (1,13), 73-80.
Chiu, Y. J., Chen, H. C., Tzeng, G. H., Shyu, J. Z., 2006. Marketing strategy based on customer behavior for the LCD-TV. International Journal of Management and Decision Making, 7(2/3), 143-165.
Demirbas, A., 2006. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management 47 (15-16), 2271-2282.
Hori S., Shimizu Y., 1999. Designing methods of human interface for supervisory control systems. Control Engineering Practice, 7 (11), 1413-1419.
Liou, J. J. H., Tzeng, G. H., Chang, H. C., 2007. Airline safety measurement using a novel hybrid model. Journal of Air Transport Management, 13 (4), 243-249.
McNicol, B. D., Rand, D.A.J., Williams, K.R., 2001. Fuel cells for road transportation purpose-yes or no? Journal of Power Sources, 100 (1), 47-59.
Mierlo J. V., Maggetto, G., Lataire, Ph., 2006. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conversion and Management, 47 (17), 2748-2760.
Mitchell, W., Bowers, B. J., Garnier, C., Boudjemaa, F., 2006. Dynamic behavior of gasoline fuel cell electric vehicles. Journal of Power Sources, 154 (2,21), 489-496.
Romm, J., 2006. The car and fuel of the future. Energy Policy, 34 (17), 2609-2614.
Shinnar, R., 2003. The hydrogen economy, fuel cells, and electric cars. Technology in Society, 25 (4), 455-476.
Tamura, M., Nagata, H., Akazawa, K., 2002. Extraction and systems analysis of factors that prevent safety and security by structural models. 41st SICE annual conference, Osaka, Japan.
Tzeng G. H., Chiang, C. H., Li, C. W., 2007. Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Systems with Applications, 32 (4), 1028-1044.
Tzeng, G. H., Lin, C. W., Opricovic, S., 2005. Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy, 33 (11), 1373-1383.
Vladimir, N., Jonathan, M., Wang H., Zhang, J., 2007. A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169 (2,20), 221-238.
Wassell, C. S. Jr., Dittmer, T. P., 2006. Are subsidies for biodiesel economically efficient? Energy Policy, 34 (18), 3993–4001.
Weiss, B., Chen, J.Y., Buchholz, B. A., Dibble, R. W., 2007. A numerical investigation into the anomalous slight NOx increase when burning biodiesel; A new (old) theory. Fuel Processing Technology, 88 (7), 659-667.
Wu, W. W., Lee, Y. T., 2007. Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Systems with Applications, 32 (2), 499–507.
Yacobucci, B. D., Curtright, A. E., 2004. A hydrogen economy and fuel cells: an overview. CRS Report for Congress.
FreedomCAR, 2005. Evaluating the Safety of a Natural Gas Home Refueling Appliance. Washington, DC.
Department of Energy's FreedomCAR and Vehicle Technologies Program, 2008. Multi-Year Research and Development Plan 2004-2008 (Advanced Power Electronics and Electric Machines section 4.4, energy efficiency and renewable energy). Washington, DC.
Draft EE tech team roadmap ORNL, 2004. Advanced power electronics and electric machines. Washington, DC.
Ethanol Across America Campaign of the Clean Fuels Foundation, 2006. A Guide for Evaluating the Requirements of Ethanol Plants (http://www.ethanolacrossamerica.net/pdfs/ethanol_plant_guide.pdf).
National renewable energy laboratory, 2005. Strategy for the integration of hydrogen as a vehicle fuel into the existing natural gas vehicle fueling infrastructure of the interstate clean transportation corridor project. Washington, DC.
National renewable energy laboratory, 2005. EPAct: Alternative Fuels for Energy Security Cleaner Air. Washington, DC.
National Economic Council, 2006. Advanced energy initiative. Washington, DC.
Office of energy efficiency and renewable energy, 2005. Evaluating the safety of a natural gas home refueling appliance. Washington, DC.
Office of energy efficiency and renewable energy, 2004. Fuel cell vehicle world survey 2003. Washington, DC.
Office of energy efficiency and renewable energy, 2006. Biodiesel handling and use guide, third edition. Washington, DC.
Office of energy efficiency and renewable energy, 2007. Clean cities alternative fuel price report. Washington, DC.
Office of energy efficiency and renewable energy, 2004. Regulators’ Guide to Permitting Hydrogen Technologies. Washington, DC.
Office of energy efficiency and renewable energy, 2004. Norcal prototype LNG truck fleet final results. Washington, DC.
Office of energy efficiency and renewable energy, 2006. Clean cities, flexible fuel vehicles: powered by an American fuel. Washington, DC.
Renewable fuels association, 2006. From Niche to Nation - Ethanol Industry Outlook. Washington, DC.
Renewable fuels association, 2005. Fuel ethanolindustry guidekines, specifications, and procedures. Washington, DC.
The America Methanol Institute, 2006. Beyond the internal combustion engine. Arlington.
The America methanol institute by breakthrough technologies institute, 2001. Beyond the internal combustion engine. Arlington.
U.S. Department of Energy, 2006. 2006 Biodiesel handling and use guide, Third Edition. Washington, DC.
United states environmental protection agency, 2002. Transportation and air quality transportation and regional programs division. Washington, DC.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 8. 池俊吉(2012)。美國高等教育認可組織之認可制度:發展與挑戰。評鑑雙月刊,35。http://epaper.heeact.edu.tw/archive/2012/01/01/5290.aspx
2. 20. 侯永琪、蔡小婷、洪維佳(2011)。澳洲大學品質保證局(AUQA)的轉型與新任務──高等教育品質與標準署(TEQSA)的新角色。評鑑雙月刊,34。http://epaper.heeact.edu.tw/archive/2011/11/01/5055.aspx
3. 5. 王保進(2006)。以品質保證為目標的美國高等教育認可制度。評鑑雙月刊,2。http://epaper.heeact.edu.tw/archive/2006/10/18/51.aspx89i
4. 賴美娟(1997)。高雄市基層警察工作壓力、休閒活動參與現況。中央警察大學學報,(31),203-226。
5. 趙國斌(2013)。大學教職人員休閒態度、休閒參與、工作活力與工作績效關聯性之研究。工作與休閒學刊1(4),33-48。
6. 劉莉玲、顏昌華、秦克堅(2011)醫護人員工作壓力、壓力調適需求與休閒參與關係之研究。國立臺中技術學院學報,15,1-22。
7. 16. 李佳玲、陳白云(2013)。數位學習課程同步視訊活動研究─以學生觀點分析教育傳播與科技研究。教育傳播與科技研究,105,1-19。
8. 14. 吳美美(2004)。數位學習現況與未來發展。圖書館學與資訊科學,30(2),92-106。
9. 黃雅文、姜逸群(2005)。健康促進與健康行為。國民教育,45(5),18-23。
10. 程紹同(1997)。優質休閒、超值人生。師友月刊,366,15-19。
11. 陳彰儀(1985)。臺北市已婚職業婦女之休閒興趣、參與情形與生活形態。教育與心理研究,8,191-210。
12. 張清富(1995)。勞工休閒活動的展望。臺灣勞工,(29),14-17。
13. 許耀文、鍾志強、蔡瑋娟、黃孟立(2010) 工作壓力、休閒參與對身心健康的影響之研究-以雲嘉地區幼教師為例。運動休閒餐旅研究,5(4),80-105。
14. 許義雄(1980)。休閒的意義、內容及其方法。體育學報,2,27-40。
15. 陸洛(1997)。工作壓力之歷程:理論與研究的對話。中華心理衛生學刊,10(4),19-51。
 
系統版面圖檔 系統版面圖檔