(3.235.108.188) 您好!臺灣時間:2021/02/25 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郝麟
研究生(外文):Lin Hao
論文名稱:酸鹼中和程序參數估算之研究
論文名稱(外文):Parameters Estimation of pH Neutralization Processes
指導教授:郭東義郭東義引用關係
指導教授(外文):Tong-Yi Guo
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:強酸當量適應控制反轉滴定分割範圍控制
外文關鍵詞:strong acid equivalentadaptive controlinverse titration functionsplit range control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:813
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
為妥善處理廢水酸鹼中和自動化程序,我們採用虛擬多質子酸來模擬進料組成,以修飾過後的強酸當量來推出此虛擬多質子酸之數學模型,再利用適應控制中的最小平方法來估測出相關參數,以反轉滴定將相關參數線性化,定義誤差並導入控制器中。模擬結果顯示,我們提出的控制器估算法,能夠快速獲得虛擬多質子酸的參數,使系統達到理想的pH控制。
In order to tackle waste water neutralization processes, a single fiction polyprotic acid is used to represent the influent stream. The polyprotic acid model is then derived by the modified strong acid equivalent and model parameters are estimated by on-line least squared method. Using the obtained model parameters, the error of controller is parameterized by an inverse of the titration curve instead of pH values. The computer simulation results show the proposed control algorithms are able to quickly reach the values of the parameters of the fiction polyproitc acid and provide a good performance for pH neutralization processes.
目錄 iv
中文摘要 i
英文摘要 ii
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-3 研究動機與目的 3
1-4 論文架構 4
第二章 酸鹼中和系統 5
2-1 前言 5
2-2 反應系統動態模式 5
2-3 系統模式說明與模擬 8
2-4 本章結論 11
第三章 適應控制 18
3-1 前言 18
3-2 適應控制系統 18
3-2-1 參考模型適應控制系統 18
3-2-2 具有受控裝置數學模式線上鑑別的適應控制系統 19
3-3 遞迴最小平方法(Recursive least-squares estimation, RLS) 20
3-4 參數估測的發散 26
3-5 進料成分的震盪 26
3-6 本文系統之適應控制推導 27
3-7 控制器設計 29
3-8 本章結論 32
第四章 模擬結果 38
4-1 前言 38
4-2 單質子酸進料 38
4-2-1 單質子酸震盪進料 38
4-2-2 單質子酸加入分割範圍控制 39
4-2-3 單質子酸震盪進料 ( 加入分割範圍控制 ) 39
4-3 雙質子酸進料 40
4-3-1 雙質子酸震盪進料 40
4-3-2 雙質子酸加入分割範圍控制 40
4-3-3 雙質子酸震盪進料 ( 加入分割範圍控制 ) 41
4-4 本章結論 42
第五章 結論與未來展望 68
參考文獻 69
1. A. P. Loh, K. O. Looi, and K. F. Fong, “Neural network modeling and control strategies for a pH process,” J. Process Control, Vol. 5, 355-362, 1995.
2. M. Han and B. Han, “Predictive Control Based on the Universal Learning Network,” Information and control, Vol 34, pp. 2-6, 2005.
3. S. L. He and H. S. Hong, “The Design and Application of a human-simulation Intelligent PID Controller,” Industrial Instrumentation & Automation, Vol. 6, pp. 31-33, 2007.
4. J. Y. Yan and N. Wang, “Neural Controller Based on Fuzzy Expert Model and Research on Its Application,” Process Automation Instrumentation, Vol. 28, pp. 1-5, 2007.
5. B. Kelkar and B. Postlethwaite, “Fuzzy-model based pH control,” IEEE 3rd Conference on Fuzzy Systems, Vol.1, pp. 661-666, 1994.
6. M. Wang and H. R. Shi, “pH self-adaptive Internal Model Control Base on SAE,” Control and Instruments in Chemical Industry, pp. 26-28, 2005.
7. S. S. Yoon, T. W. Yoon, D.R. Yang, and T.S. Kanga, “Indirect adaptive nonlinear control of a pH process,” Computers and Chemical Engineering, Vol. 26, pp.1223-1230, 2002.
8. J. Lee and J. Y. Choi, “In-line mixer for feedforward control and adaptive feedback control of pH processes,” Chemical Engineering Science, Vol. 55, pp.1337-1345, 2000.
9. J. F. Li and T. Y. Guo, “Adaptive Control of pH Neutralization Process,” Preceeding of the 4th KUSA Academic Symposium, pp. 25-30, 2004.
10. S. W. Sung, I. B. Lee, J. Y. Choi, and J. Lee, “Adaptive control for pH systems,” Chemical Engineering Science, Vol. 55, pp. 1941-1953, 1998.
11. T. Y. McAvoy, E. Hsu, and S. Lowenthal, “Dynamics of pH in controlled stirred tank reactor,” Ind. Eng. Chem. Process Des. Dev., Vol. 11, pp. 68-70, 1972.
12. T. Y. McAvoy, “Dynamic models for pH and other fast equilibrium systems,” Ind. Eng. Chem. Process Des. Develop., Vol. 11, pp. 630-631, 1972.
13. R. A. Wright and Kravaris C., “Nonlinear control of pH processes using the strong acid equivalent,” Ind. Eng. Chem. Process Res., Vol.30, pp. 1561-1572, 1991.
14. T. K. Gustafsson and K. V. Waller, “Dynamic modeling and reaction invariant control of pH control,” Chemical Engineering Science, Vol. 38, pp. 389-398, 1983.
15. F. G. Shinskey, pH and pIon Control in Process and Waste Streams, John Wiely & Sons, 1973.
16. T. Y. McAvoy, E. Hsu, and S. Lowenthal, “Dynamics of pH in controlled stirred tank reactor,” Ind. Eng. Chem. Process Des. Dev., Vol. 11, pp. 68-70, 1972.
17. K. V. Waller and P. M. Maklla, “Chemical reaction invariants and variants and their use in reactor modeling, simulation, and control,” Ind. Eng. Chem. Process Des. Dev., Vol. 20, pp. 1-11, 1981.
18. T. K. Gustafsson, “An experimental study of a class of algorithms for adaptive pH control,” Chemical Engineering Science, Vol. 40, pp. 827-837, 1985.
19. X. H. Xia, B. Liu, Z. Y. Luan, and Y. H. Jin, “APSO-based Nonlinear Predicted Control and Its Application for the pH Neutralization Reactor Control,” Control and Instruments in Chemical Industry, pp. 24-27, 2006.
20. N. R. Lakshmi Narayanan, P. R. Krishnaswamy, and G. P. Rangaiah, “Use of alternate process variable for enhancing pH control performance,” Chemical Engineering Science, Vol. 53, pp.3041-3049, 1998.
21. K. J. Astrom and B. Wittenmark, Adaptive Control, Addision-Wesley Publishing Co., New York, 1989.
22. 韓曾晉,適應控制系統,科技圖書股份有限公司,1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔