(3.239.33.139) 您好!臺灣時間:2021/03/07 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃陳裕
研究生(外文):Chen-Yu Huang
論文名稱:電泳動沉積法製備氧化鎳電極及其電化學電容器特性探討
論文名稱(外文):Electrophoretic deposition of nickel oxide electrodes for electrochemical capacitors
指導教授:吳茂松
指導教授(外文):Mao-Sung Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:152
中文關鍵詞:電泳動氧化鎳電化學電容器
相關次數:
  • 被引用被引用:1
  • 點閱點閱:511
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Nickel hydroxide (Ni(OH)2) powder is synthesized by co-precipitation method and is deposited onto the stainless steel (SS) substrate by electrophoretic deposition (EPD) and dip coating, respectively. Electrochemical performances and capacitive properties of the deposited Ni(OH)2 electrode after annealing at different temperatures for different lengths of time is investigated by cyclic voltammetry (CV). In addition, nickel oxide/carbon fiber (NiO/VGCF) and nickel oxide/carbon nanotube (NiO/CNT) composite electrodes are fabricated by EPD in order to enhance the capacitive behavior of the pure NiO electrode.
Surface morphology of the synthesized Ni(OH)2 powder is platelet-like shape structure observed by SEM. Annealing temperature influences both the crystal structure and the specific surface area of the synthesized Ni(OH)2. XRD results show that the Ni(OH)2 converts into NiO after annealing at temperature higher than 300 ℃ due to the removal of water from Ni(OH)2. BET analysis indicates that Ni(OH)2 powder after annealing at 300 ℃ has the highest specific-surface area compared with other annealing temperatures.
An electrode after annealing at 300 ℃ has better capacitive behavior due to the conversion of Ni(OH)2 to NiO. The oxidation and reduction peaks during CV scan appear at 0.45 V and 0.35 V versus Ag/AgCl reference electrode, respectively. Specific capacitance of an electrode after annealing at 300 ℃ is found to be about 140 Fg-1 at a scan rate of 10 mVs-1.
The XRD and SEM results indicate that NiO particles are coated on the surface of carbon nanofiber/nanotube by EPD. The high conductivity of VGCF facilitates the redox reactions of NiO in 0.45 V (oxidation) and in 0.35 V (reduction), and therefore, promotes effectively the nickel oxide in the capacitance characteristics.
Compared with NiO electrode, the specific capacitances of NiO/VGCF and NiO/CNT composite electrodes are increased by 30 Fg-1 and 10 Fg-1, respectively in scan rate of 10 mVs-1. The results show that VGCF and CNT can improve the capacitive behavior of the composite electrode effectively.
中文摘要--------------------------------------------------------------------------Ⅰ
英文摘要--------------------------------------------------------------------------Ⅲ
總目錄-----------------------------------------------------------------------------V
表目錄-----------------------------------------------------------------------------Ⅹ
圖目錄---------------------------------------------------------------------------- XI
第一章 緒論-----------------------------------------------------------------------1
1-1 電泳發展概述-----------------------------------------------------------1
1-2 電泳動沉積之簡介-----------------------------------------------------2
1-3 電泳動沉積原理--------------------------------------------------------5
1-3.1 電泳動電雙層原理---------------------------------------------5
1-3.2 電泳沉積過程的三種步驟------------------------------------7
1-3.3 電泳沉積的動作------------------------------------------------7
1-4 電泳的分類--------------------------------------------------------------8
1-4.1 按分離原理分類------------------------------------------------8
1-4.1-1 移界電泳(MBEP)-----------------------------------8
1-4.1-2 區帶電泳(ZEP)--------------------------------------8
1-4.1-3 等電聚焦(IEF)---------------------------------------9
1-4.1-4 等速電泳(ITP)---------------------------------------9
1-4.2 按有無固體支持物分類-------------------------------------11
1-4.2-1 自由電泳(free electrophoresis )------------------11
1-4.2-2 區帶電泳(zone electrophoresis)----------------11
1-5 影響電泳速度的因素-------------------------------------------------12
1-5.1 電場強度-------------------------------------------------------13
1-5.2 溶液pH----------------------------------------------------------13
1-5.3 電滲現象-------------------------------------------------------13
1-5.4 溫度對電泳的影響-------------------------------------------13
1-5.5 其它之影響----------------------------------------------------14
1-6 電泳沉積電解液種類------------------------------------------------16
1-6.1 溶劑種類-------------------------------------------------------16
1-6.1-1 水系統 (aqueous system)------------------------16
1-6.1-2 非水系統 (non-aqueous system)----------------16
1-6.2 添加物種類----------------------------------------------------17
1-6.2-1 添加碘元素-----------------------------------------17
1-6.2-2 添加硝酸鎂-----------------------------------------22
1-7 電泳沉積現象----------------------------------------------------------23
1-8 電化學電容器之簡介-------------------------------------------------28
1-8.1 電化學電容器之儲電原理與機制------------------------29
1-8.2 電化學電容值之計算方式---------------------------------31
1-9 電極材料之種類-------------------------------------------------------32
1-9.1 碳系材料(carbon materials)-------------------------------32
1-9.1-1 奈米碳管電泳沉積之應用--------------------34
1-9.2 金屬氧化物(metal oxides)---------------------------------35
1-9.2-1 氧化鎳之製備及應用--------------------------36
1-10 以電泳沉積法製備電容--------------------------------------------45
1-11 研究動機與目的-----------------------------------------------------46
第二章 實驗方法與步驟------------------------------------------------------48
2-1 不銹鋼基材前處理----------------------------------------------------48
2-2 氫氧化鎳之製備-------------------------------------------------------50
2-3 電泳動實驗-------------------------------------------------------------52
2-4 電極片之製備----------------------------------------------------------54
2-4.1 氫氧化鎳電極片之製備--------------------------------------54
2-4.2 氫氧化鎳/碳纖維與氫氧化鎳/奈米碳管複材電極片
之製備------------------------------------------------------------55
2-5 物理特性分析----------------------------------------------------------55
2-5.1 結構型態分析-------------------------------------------------55
2-5.2 表面型態分析-------------------------------------------------56
2-6 電化學特性分析-------------------------------------------------------56
2-7 實驗藥品----------------------------------------------------------------58
2-8 實驗儀器----------------------------------------------------------------59
2-9 電化學分析儀----------------------------------------------------------60
2-10 其他儀器--------------------------------------------------------------61
第三章 結果與討論------------------------------------------------------------62
3-1 物理特性分析與探討-------------------------------------------------62
3-1.1 XRD之結構分析-----------------------------------------------62
3-1.2 SEM之表面型態分析-----------------------------------------64
3-1.3 BET之比表面積分析-----------------------------------------78
3-1.4 粒徑分析來進行表面型態上的分析----------------------81
3-2 氧化鎳電極之電化學特性分析與探討---------------------------84
3-2.1 電泳沉積氧化鎳之時間對重量之研究-------------------84
3-2.2 不同電泳電壓沉積氫氧化鎳時電流隨時間變化
情形-------------------------------------------------------------86
3-2.3 沉積氧化鎳之重量對電容之研究-------------------------92
3-2.4 煅燒溫度與時間對電泳沉積與浸鍍沉積之氧化鎳電
極的電化學特性研究----------------------------------------94
3-2.5 氧化鎳/碳纖維及氧化鎳/奈米碳管複合電極之電化
學特性研究---------------------------------------------------109
3-2.6 碘系統含水量與稠狀和顆粒狀氫氧化鎳電泳電極
對電化學特性之研究---------------------------------------120
第四章 結論--------------------------------------------------------------------124
參考文獻------------------------------------------------------------------------127
Reference
【1】李建武等合編, ”藝軒圖書出版社:生物化學實驗原理和方法”, P114~146, 1999.
【2】張樹政, ”中國大百科全書:化學-電泳”, 中國大百科全書出版社, 1987年12月.
【3】L. Vorwerg, M. Antonietti, K. Tauer, “Electrophoretic mobility of latex particles: effect of particle size and surface structure,” Journal of Colloid and Surfaces, A: Physicochemical and Engineering Aspects, 150, pp.129-135, 1999.
【4】R.F. Louh, Y.H. Pan, Y.W. Ku, “Influences of applied electric and magnetic field on electrophoresis of fine ceramic particlesin nonaqueous suspension”, Department of Materials Science, Feng Chia University.
【5】R.F. Louh, Y.H. Pan, Y.W. Ku, “Fabrication of dielectric BaTiO3/SrTiO3 ceramic composite with multilayer structure by EPD technique”,中國材料科學學會2001年度年;中興大學;2001.11.23-2001.11.25.
【6】程志賢, ”Performance evaluation of Al2O3/TZP multilayer ceramic tool inserts made by aqueous electrophoretic deposition”, 明志技術學院材料工程系, 國科會計劃編號:NSC91-2216-E-131-001。
【7】J. Tabellion, J. Zeiner, R. Clasen, “Manufacturing of pure and doped silica and multicomponent glasses from SiO2 nanoparticles by reactive electrophoretic deposition”, Journal of Materials Science, 41, pp.8173–8180, 2006.
【8】駱榮富, ”鈦酸鋇/鈦酸鍶功能梯度複合材料之電泳披覆製程研究”, 逢甲大學材料科學研究所, 計畫編號:NSC-89-2216- E-035-019。
【9】N. Koura, T. Tuskamoto, H. Shoji, T. Hotta, “Preparation of various oxide films by an electrophoretic deposition method : a study of the mechanism”, Physics, 34, pp.1643-1647,1995.

【10】C. Du, D. Heldbrant, N. Pan, “Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition”, Materials Letters, 57, pp.434–438, 2002.
【11】S. Novak, K. Mejak, G. Drazic, “The preparation of LPS SiC-fibre-reinforced SiC ceramics using electrophoretic deposition” Journal of Materials Science, 41, pp.8093–8100, 2006.
【12】功能性氧化物實驗室, “奈米能源材料合成應用實驗”.
【13】R. Kotz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, 45, pp.2483-2498, 2000.
【14】R. Gallay, A. Züttel, “Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials”, Journal of Power Sources, 124, pp.321-329, 2003.
【15】J. P . Zheng, T. R . Jow, “High energy and high power density electrochemical capacitors”, Journal of Power Sources, 62, pp.155-159,1996.
【16】C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, E. Frackowiak, F. Beguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon, 39, pp.937-950, 2001.
【17】黃伯勤,王聖璋, ”Carbon nanotube/Ag/SiO2 field emission cathode prepared by electrophoretical deposition in the colloid with cationic surfactants”, 南台科技大學機械工程研究所, 國科會計畫編號:NSC95-2221-E-218-018.
【18】J. H. Chen, W. Z. Li, D. Z. Wang, S. X. Yang, J. G. Wen, Z. F. Ren, “Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors”, Carbon, 40, pp.1193-1197, 2002.
【19】R. Z. Ma, J. Liang, B. Q. Wei, B. Zhang, C. L. Xu, D. H. Wu, “Study of electrochemical capacitors utilizing carbon nanotube electrodes”, Journal of Power Sources, 84, pp.126-129, 1999
【20】Q. Jiang, M. Z. Qu, G. M. Zhou, B. L. Zhang, Z. L. Yu, “A study of activated carbon nanotubes as electrochemical supercapacitors electrode materials”, Materials Letters, 57, pp.988-991, 2002.
【21】C. Du, N. Pan, “Supercapacitors using carbon nanotubes films by electrophoretic deposition”, Journal of Power Sources, 160, pp.1487–1494, 2006.
【22】B. Fang, Y. Z. Wei, K. Suzuki, M. Kumagai, “Surface modification of carbonaceous materials for EDLCs application”, Electrochimica Acta, 50, pp.3616-3621, 2005.
【23】高逢時, “奈米科技”, 科學發展, 386期, 2005.
【24】K. Yamamoto , S. Akita and Y. Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis” Journal of Physics D: Applied Physics, v 31, n 8, p L34-L36, 1998.
【25】M. S. Kumar, S. H. Lee, T. Y. Kim, T. H.Kim, S. M.Song, J. W. Yang, K. S. Nahm, E. K. Suh,” DC electric field assisted alignment of carbon nanotubes on metal electrodes”, Solid-State Electronics, 47, pp.2075-2080, 2003.
【26】J. Sun, L. Gao, “Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation”, Carbon, 41, pp.1063-1068, 2003.
【27】Y. K. Choi, K. I. Sugimoto, S. M. Song, M. Endo, “Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets”, Materials Letters, 59, pp.3514-3520, 2005.
【28】J. H. Jang, A. Kato, Kenji Machida, K. Naoi,” Supercapacitor performance of hydrous ruthenium oxide electrodes prepared by electrophoretic deposition”, Journal of The Electrochemical Society, 153, (2) A321-A328, 2006.
【29】C.C. Hu, C.Y. Cheng, “Anodic deposition of nickel oxide for the nickel-based batteries”, Journal of Power Sources, 111, pp.137-144, 2002.
【30】C.C. Yang, “Synthesis and characterization of active materials of Ni(OH)2 powders”, International Journal of Hydrogen Energy, 27, pp.1071-1081, 2002.
【31】J. Zhang, L. Gao, “Synthesis and characterization of nanocrystalline tin oxide by sol-gel method”, Journal of Solid State Chemistry, 177, pp.1425-1430, 2004.
【32】P.S. Patil, L.D. Kadam, “Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films”, Applied Surface Science, 199, pp.211-221, 2002.
【33】W. Xing, F. Li, Z.F. Yan, G.Q. Lu, “Synthesis and electrochemical properties of mesoporous nickel oxide”, Journal of Power Sources, 134, pp.324-330, 2004.
【34】W. Xing, F. Li, Z.F. Yan, H.M. Cheng, G.Q. Lu, “Synyhesis of wormlike nanoporous nickel oxide with nanocrystalline framework for electrochemical energy storage”, International Journal of Nanoscience Vol. 3, No. 3, pp.321-329, 2004.
【35】X. M. Liu, X. G. Zhang, “NiO-based composite electrode with RuO2 for electrochemical capacitors”, Electrochimica Acta, 49, pp.229-232, 2004.
【36】C.C. Hu, C.Y. Cheng, “Ideally pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition”, Electrochemical and Solid-State Letters, 5(3), pp.A43-A46, 2002.
【37】F. Pico, J. Ibanez, T.A. Centeno, C. Pecharroman, R.M. Rojas, J.M. Amarilla, J.M. Rojo, “RuO2•xH2O/NiO composites as electrodes for electrochemical capacitors Effect of the RuO2 content and the thermal treatment on the specific capacitance”, Electrochimica Acta, 51, pp.4693-4700, 2006.

【38】G.T. Zhou, Q.Z. Yao, X. Wang, J.C. Yu, “Preparation and characterization of nanoplatelets of nickel hydroxide and nickel oxide”, Materials Chemistry and Physics, 98, pp.267-272, 2006.
【39】S.A. Mahmoud, S.A. Aly, M.A. Rahman, K. A. Hady, “Electrochromic characterisation of electrochemically deposited nickel oxide films”, Physica B, 293, pp.125-131, 2000.
【40】X.Y. Song, Y.X. He, C.M. Lampert, X.F. Hu, X.F. Chen, “Cross-sectional high-resolution transmission electron microscopy of the microstructure of electrochromic nickel oxide”, Solar Energy Materials & Solar Cells, 63, pp.227-235, 2000.
【41】I. Porqueras, E. Bertran1, “Electrochromic behaviour of nickel oxide thin films deposited by thermal evaporation”, Thin Solid Films, 398-399, pp.41-44, 2001.
【42】J.Y. Lee, K. Liang, K.H. Ana, Y.H. Lee, “Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance”, Synthetic Metals, 150, pp.153-157, 2005.
【43】X.M. Liu, Y.H. Zhang, X.G. Zhang, S.Y. Fu, “Studies on Me/Al-layered double hydroxides (Me=Ni and Co) as electrode materials for electrochemical capacitors”, Electrochimica Acta, 49, pp.3137-3141, 2004.
【44】陳壽安, “導電高分子:新世代光電材料”, 物理雙月刊, 23卷, 2期, 4月, 2001.
【45】C. Natarajan, S. Ohkubo, G. Nagami,” Influence of film processing temperature on the electrochromic properties of electrodeposited nickel hydroxide”, Solid State Ionics, 80, pp.949-953, 1996.


【46】M. W. Mehren, R. Oesten, P. Wilde, R. A. Huggins,” The mechanism of electrodeposition and operation of Ni(OH)2 layers”, Solid State Ionics, 86-88, pp.841-847, 1996
【47】Y. G. Wang, Y. Y. Xia, “Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15”, Electrochimica Acta, 51, pp.3223-3227, 2006.
【48】H. Kamal, E. K. Elmaghraby, S. A. Alic, K. A. Hady, ”Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis”, Journal of Crystal Growth, 262, pp.424-434, 2004.
【49】S. M. Lipka, “Electrochemical capacitors utilizing low surface area carbon fiber”, IEEE, pp.245-248, 1997.
【50】G. H. Yuan, Z. H. Jiang, A. Aramata, Y. Z. Gao, “Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide”, Carbon, 43, pp.2913-2917, 2005.
【51】C. R. Magana, D. R. Acosta, A. I. Martinze, J. M. Ortega, “Electrochemically induced electrochromic properties in nickel thin films deposited by DC magnetron sputtering”, Solar Energy, 80, pp.161-169, 2006.
【52】C. Du, N. Pan1,”High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition”, Nanotechnology, 17, pp.5314-5318, 2006.
【53】V. Srinivasan, J. W. Weidner, “Studies on the capacitance of nickel oxide films : effect of heating temperature and electrolyte concentration” , Journal of The Electrochemical Society, 147, pp.880-885, 2000.
【54】謝宏和, “氧化鎳/奈米碳纖維電極材料合成及其電化學電容器特性探討”, 國立高雄應用科技大學化學工程與材料工程系碩士班碩士論文, 2007.

【55】K. Kamada, M. Mukai, Y. Matsumoto, “Electrophoretic deopsition assisted by soluble anode”, Materials Letters, 57, pp.2348-2351, 2003.
【56】Y. C. Wang, I. C. Leu, M. H. Hon, “Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition”, Journal of Crystal Growth, 237-239, pp.564-568, 2002.
【57】J. B. Talbot, E. Sluzky, S. K. Kurinec, “Electrophoretic deposition of monochrome and color phosphor screens for information displays”, Journal of Materials Science, 39, pp.771-778, 2004.
【58】S. Novak, K. Mejak, G. Drazic, “The preparation of LPS SiC-fibre-reinforced SiC ceramics using electrophoretic deposition” Journal of Materials Science, 41, pp.8093–8100, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔