(54.236.58.220) 您好!臺灣時間:2021/03/09 15:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王偉明
研究生(外文):Wei-Ming Wang
論文名稱:生物可分解性之縮合型聚亞醯胺之研究
論文名稱(外文):Preparation and characterization of biodegradable condensation polyimide
指導教授:林榮顯陳奕宏陳奕宏引用關係
指導教授(外文):Rong-Hsien LinYi-Hung Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:111
中文關鍵詞:聚亞醯胺生物可分解縮合聚合
外文關鍵詞:polyimidebiodegradablecondensation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:693
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
本計畫係利用生物可分解性之聚富馬酸丙二醇酯(Poly(propylene fumarate), PPF) 寡聚合物與3-chloropropylamine hydrochloride鍵結形成具分解性的雙胺(amine terminated PPF, PPF-NH2)寡聚合物片段。接著再與3,3’,4,4’-biphenyltetracarboxylic dianhydride (s-BPDA)進行溶液縮合反應,聚合形成生物可分解性聚醯胺酸(bio-polyamic acid; bio- PAA)。最後藉由低溫真空熱處理環化bio- PAA製備具生物可分解性之聚亞胺(bio-polyimide; bio-PI)薄膜。並用生物不可分解之雙胺(4,4’-oxydianiline, 4,4’-ODA)取代部分PPF-NH2,製備出random type的生物可分解聚亞醯胺薄膜。

使用FTIR與1H-NMR鑑定PPF與PPF-NH2的化學結構,並用GPC估測其分子量。同樣使用FTIR鑑定製備出的bio-PI與random bio-PI結構後,以磷酸鹽緩衝液(phosphate buffer solution)測試bio-PI之分解特性。並以Scanning Electron Microscopy (SEM)觀察分解前後bio-PI薄膜之表面形態差異,藉此輔助證明bio-PI分解特性。

在緩衝液分解測試期間bio-PI薄膜產生明顯的重量損失與形變,且發現使用PPF-NH2與s-BPDA製備的bio-PI薄膜分解速率較混入不可分解雙胺(4,4’-ODA)的random type bio-PI薄膜快,而在63天的分解後薄膜破損情況也較明顯。不過可由重量損失,發現雖然混入不具生物分解特性的雙胺,random type的bio-PI同樣具有分解特性。在SEM的觀察中可發現在分解前薄膜表面是平整的,經過約42天的分解後,不論是使用PPF-NH2與s-BPDA製備的bio-PI薄膜或是random type bio-PI皆可在表面形態上看出明顯的破損與坑洞,由此即可證明bio-PI 與random type bio-PI都具有分解特性。

最後以Thermal Gravimetric Analysis (TGA)與Dynamic Mechanical Analysis(DMA)測試製備出之bio-PI薄膜熱性質與機械性質。發現bio-PI薄膜之熱穩定性偏低,其Td5%約187 oC。與不可分解之PI的高熱穩定性有段差距,但是藉由混入4,4’-ODA即可小幅提升其熱穩定性。而bio-PI之機械性質同樣低於不可分解之PI,但下降幅度仍屬可接受範圍。且同樣在混入4,4’-ODA後,其機械性質同樣有小幅度的提昇。藉此即可證明混入4,4’-ODA可改善bio-PI之機械性質與熱性質,且由分解測試結果也可確定random type bio-PI依然具有可分解的特性。
Biodegradable oligomer, amine terminated poly(propylene fum-
arate)(PPF-NH2), was successfully synthesized from poly(propylene fumarate) oligomer (PPF) and 3-chloropropylamine hydrochloride. PPF
-NH2 was successfully used to react with 3,3’,4,4’-biphenyl tetracarboxylic dianhydride (s-BPDA) in the solvent to generate biodegradable poly(amic acid) (bio-PAA) via condensation reaction. A final product of biodegr-
adable polyimide (bio-PI) was obtained by immidization of bio-PAA at the low temperature (120 oC) under the vacuum condition. Amount of biodegr-
adable segment (PPF-NH2) in the bio-PI can be arranged to synthesize the random type of bio-PI by replacing some PPF-NH2 with 4,4’-oxydianiline (4,4’-ODA).

The synthesized PPF, PPF-NH2, bio-PAA, and bio-PI were charac-
terized by FTIR, 1H-NMR, and GPC. The degradation characterization of various bio-PI films was performed at phosphate buffer solution. The morphologies of various bio-PI films and their degraded materials were observed by Scanning Electron Microscopy (SEM). The thermal and mechanical properties of the Bio-PI’s were measured by the TGA and DMA, respectively.

The weight loss and degraded surface of the bio-PI films were very apparent after buffer solution test. The bio-PI film synthesized from PPF-NH2 and s-BPDA was degraded more quickly than the random type of bio-PI film incorporated with 4,4’-ODA. The degree of degradation for various bio-PI film increases with increasing the degradation time.

The thermal properties of bio-PI is a little worse than these of PI; but it is still comparable to these of PI. The thermal properties of bio-PI is enhanced by replacement of PPF-NH2 with 4,4’-ODA. The mechanical property of bio-PI is a little worse than PI, but it’s still in the same magnitude order.
總目錄

計畫摘要 I
Abstract III
總目錄 IV
流程目錄(Scheme) V
表目錄(Table) VI
圖目錄(Figure) VI

第一章 前言

前言 1

第二章 基本原理及文獻回顧

2.1生物可分解材料之定義與簡介 4
2.1.1生物可分解高分子簡介與定義 4
2.1.2生物可分解高分子的種類 5
2.1.3常見的生物可分解高分子塑膠與應用 6
2.1.4生物可分解高分子測試方法 7
2.2聚富馬酸丙二醇酯(Poly propylene fumarate, PPF)簡介與文獻
回顧 9
2.3 聚亞醯胺簡介 11
2.3.1 縮合型聚亞醯胺 11
2.3.2加成型聚亞醯胺 12
2.4聚亞醯胺酸之優缺點 13
2.5.簡介聚亞醯胺酸之醯胺化 14
2.5.1物理環化 14
2.5.2化學環化 14
2.5.3 UV光環化 15
2.6.研究動機及目的 15

第三章 實驗部份

3.1實驗材料 17
3.2實驗儀器 19
3.3合成生物可分解性聚富馬酸丙二醇酯(PPF)與結構鑑定 21
3.4合成amine terminated PPF (PPF-NH2)與結構鑑定 22

第四章: 結果與討論

4.1不具生物可分解性聚亞醯胺(PI)薄膜製備與結構鑑定 25
4.2各種配比之生物可分解性聚亞醯胺(bio-PI)薄膜製備與結構鑑定 26
4.3生物可分解性聚亞醯胺薄膜(bio-PI)之緩衝液分解測試與探討 30
4.4各種配比之生物可分解聚亞醯胺(bio-PI)分解後表面形態探討 32
4.5各種配比之生物可分解聚亞醯胺(bio-PI)之熱穩定性探討 36
4.6各種配比之生物可分解聚亞醯胺(bio-PI)之機械性質探 37

第五章: 結論

結論 39

第六章:參考文獻

參考文獻 41

附錄 A. 文獻回顧

1-1常見的生物可分解高分子與應用 103
1-2生物可分解聚亞醯胺(biodegradable PI)之文獻回顧 105
1-3生物可分解之聚對苯二甲酸乙二醇酯(Poly(ethylene
terephthalate);PET)之文獻回顧 107
參考文獻 109

流程目錄 (Scheme)

Scheme 1.縮合型聚醯亞胺典型的二階段法 46
Scheme 2.可溶性聚醯亞胺的一階段法 47
Scheme 3.加成型雙馬來亞醯胺合成之流程圖 47
Scheme 4.物理環化之示意圖 48
Scheme 5.化學環化之示意圖 48
Scheme 6.UV光環化之示意圖 49
Scheme 7.PPF合成流程示意圖 50
Scheme 8.PPF製備流程圖 51
Scheme 9.Amine terminated PPF合成流程示意圖 52
Scheme 10. Amine terminated PPF製備流程圖 53
Scheme 11.聚醯胺酸製備之流程示意圖 54
Scheme 12.聚醯胺酸製備之流程圖 55
Scheme 13.聚亞醯胺薄膜製備之流程圖 56
Scheme 14.生物可分解聚醯胺酸與聚亞醯胺流程示意圖 57
Scheme 15.生物可分解聚醯胺酸製備流程圖 58
Scheme 16. Random type生物可分解聚醯胺酸與聚亞醯胺流程
示意圖 59
Scheme 17. Random tpye之生物可分解性聚醯胺酸製備流程圖 60
Scheme 18.生物可分解之聚亞醯胺(bio-50-PI, bio-40-PI, bio-30-PI)
薄膜製備流程圖 61

表目錄 (Table)

Table 1. 各配比聚亞醯胺薄膜之Td5%與碳灰重(char weight) 62
Table 2. 各配比聚亞醯胺薄膜之Td5%與碳灰重(char weight) 63
Table 3. 各配比之聚亞醯胺薄膜之機械性質(DMA) 64

圖目錄 (Figure)

Figure 1.固態廢棄物處理槽構造圖 7
Figure 2.非熱可塑性聚亞醯胺之結構 11
Figure 3.熱可塑性聚亞醯胺之結構 12
Figure 4.熱固型聚亞醯胺之結構 13
Figure 5.(a) Propylene glycol, (b) Fumaryl chloride ,(c) PPF之FTIR
光譜圖 65
Figure 6.製備PPF專利之FTIR光譜圖 66
Figure 7. PPF之1H-NMR光譜圖 67
Figure 8. PPF之GPC圖 68
Figure 9. (a) PPF ,(b) 3-chloropropylamine hydrochloride, (c) amine terminated PPF之FTIR光譜圖. 69
Figure 10. Amine terminated PPF之1H-NMR光譜圖 70
Figure 11. Amine terminated PPF之GPC圖. 71
Figure 12. (a) PAA ,(b) PI之FTIR光譜圖 72
Figure 13. (a) 4,4’-ODA, (b) s-BPDA, (c) amine terminated PPF,
(d) bio-50-PAA, (e) bio-50-PI之FTIR光譜圖 73
Figure 14. (a) s-BPDA ,(b) 4,4’-ODA, (c) amine terminated PPF, (d) bio-50-PAA, (e) bio-40-PAA, (f) bio-30-PAA之FTIR
光譜圖 74
Figure 15. (a) bio-50-PAA ,(b) bio-50-PI, (c) bio-40-PAA, (d) bio
-40-PI,(e) bio-30-PAA, (f) bio-30-PI之FTIR光譜圖 75
Figure 16. Bio-PI與PI重量損失分率與時間關係圖 76
Figure 17. Bio-50-PI未分解前 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 77
Figure 18. Bio-50-PI分解ㄧ天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 78
Figure 19. Bio-50-PI分解三天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 79
Figure 20. Bio-50-PI分解七天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 80
Figure 21. Bio-50-PI分解二十一天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 81
Figure 22. Bio-50-PI分解四十二天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 82
Figure 23. Bio-50-PI分解六十三天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 83
Figure 24. Bio-40-PI未分解前 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 84
Figure 25. Bio-40-PI分解一天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 85
Figure 26. Bio-40-PI分解三天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 86
Figure 27. Bio-40-PI分解七天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 87
Figure 28. Bio-40-PI分解二十一天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 88
Figure 29. Bio-40-PI分解四十二天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 89
Figure 30. Bio-40-PI分解六十三天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 90
Figure 31. Bio-30-PI未分解前 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 91
Figure 32. Bio-30-PI分解一天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 92
Figure 33. Bio-30-PI分解三天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 93
Figure 34. Bio-30-PI分解七天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 94
Figure 35. Bio-30-PI分解二十一天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 95
Figure 36. Bio-30-PI分解四十二天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 96
Figure 37. Bio-30-PI分解六十三天後 SEM影像圖 (a)為放大5000
,(b)為放大10000,(c)為放大30000倍 97
Figure 38.未生物分解前之PI, bio-50-PI, bio-40-PI, bio-30-PI之
TGA圖 98
Figure 39.生物分解測試1天, 7天,21天,42天和63天後的
bio-50-PI之TGA圖 99
Figure 40.生物分解測試1天, 7天,21天,42天和63天後的
bio-40-PI之TGA圖 100
Figure 41.生物分解測試1天, 7天,21天,42天和63天後的
bio-30-PI之TGA圖 101
Figure 42. The storage modulus curves for PI, bio-50-PI, bio-40-PI
and bio-30-PI 102
第六章 參考文獻

【01】M. Okada, Chemical syntheses of biodegradable polymers, Prog. Polym. Sci, 27, 87-133 (2002).
【02】http://www.ebpa.org.tw/index.htm. 中華民國環保生物可分解材料協會。
【03】Book reviews, Polym. Degrad. and Stab. 53, 269-270 (1996).
【04】D. W. Grijpma, Q. Hou, J. Feijen, Preparation of biodegradable networks by photo-crosslinking lactide, ε-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester, Biomaterials, 26, 2795-2802 (2005).
【05】J. A. Wallach, S. J. Huang, Copolymers of Itaconic Anhydride and Methacrylate-Terminated Poly(lactic acid) Macromonomers, Biomacromolecules, 1, 174-179 (2000).
【06】R. Bongiovanni, M. Sangermano, G. Malucelli, A. Priola, UV curing of photoinitiator-free systems containing bismaleimides and diacrylate resins: bulk and surface properties, Prog. Org. Coat. 53, 46-49 (2005).
【07】C. Parka, Z. Ounaiesb, K. E. Wisea, Joycelyn S. Harrison, In situ poling and imidization of amorphous piezoelectric polyimides, Polymer, 45, 5417-5425 (2004).
【08】A. K. Mohanty, M. Misra, G. Hinrichsen, Biofibres biodegradable polymers and biocomposites: An overview, Macromol. Mater. Eng. 276, 277, 1-24 (2000).
【09】B. D. Wilde, J. Boelens, Prerequisites for biodegradable plastic materials for acceptance in real-life composting plants and technical aspects, Polym. Degrad. Stab. 59, 7 (1998).
【10】A. C. Albertsson, S. Karlsson, in: “Chemistry and Technology
of Biodegradable Polymers”, Blackie, Glasgow, 48 (1994).
【11】“ASTM standards on environmentally degradable plastics”,1993 ASTM publication code number (DCN): 03-420093-19.
【12】CEN TC 261 SC4 W62 draft “Requirements for packaging recoverable in the form of composting and biodegradation, test scheme for the final acceptance of packaging”, March 11, 1996.
【13】生物可分解塑膠,美國飼料穀物協會,1997.
【14】E. R. Kenawya, F. I. Abdel-Hay, M. H.El-Newehy, G. E. Wnek, Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers, Mater Sci Eng A, 459, 390-396 (2007).
【15】S. Zhou, X. Deng, H. Yang, Biodegradable poly(ε-caprolactone)
-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system, Biomaterials, 24, 3563-3570 (2003).
【16】H. Yasuda, K. Yamamoto, Y. Nakayama,C. Tsutsumi, P. Lecomte, R. Jerome, S. McCarthy, D. Kaplan, Comparison of Sm complexes with Sn compounds for syntheses of copolymers composed of lactide and ε-caprolactone and their biodegrade-
Abilities, React. Funct. Polym. 61, 277-292 (2004).
【17】H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng,T. Yagi, Amphiphilic biodegradable copolymer, poly(aspartic acid-colactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(ε-caprolactone), Polym. Degrad. and Stab. 80, 241-250 (2003).
【18】S. He, M.D. Timmer, M.J. Yaszemski, A.W. Yasko, P.S. Engel, A.G. Mikos, Synthesis of biodegradable poly(propylene fumarate) networks with poly(propylene fumarate)-diacrylate macromers as crosslinking agents and characterization of their degradation products, Polymer, 42, 1251-1260, (2001).
【19】E. L. Hedberg, H. C. Kroese-Deutman, C. K. Shih, R. S. Crowther, D. H. Carney, A. G. Mikos, J. A. Jansen, In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds, Biomaterials, 26, 4616-4623 (2005).
【20】Il. Chung, D. Xie, A. D. Puckett, J. W. Mays, Syntheses and evaluation of biodegradable multifunctional polymer networks, Eur Polym. J. 39, 1817-1822 (2003).
【21】S. He, M. J. Yaszemski, A. W. Yasko, P. S. Engel, A. G. Mikos, Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate, Biomaterials, 21, 2389-2394 (2000).
【22】C. L. Yue, R. A. Gross, S. P. McCarthy, Composting studies of poly(β-hydroxybutyrate-co-β-hydroxyvalerate), Polym. Degrad. and Stab. 51, 205-210 (1996).
【23】J.C. Jang, P. K. Shin, I. M. Lee, H. S. Lee, M. N. Kim , Glucose effect on the biodegradation of plastics by compost from food garbage, Polym. Degrad. and Stab. 76, 155-159 (2002).
【24】Y. Kuzyakov, J. K. Friedel, K. Stahr, Review of mechanisms and quantification of priming effects, Soil Biol. & Biochem. 32, 1485-1498 (2000).
【25】P. Rychter, R. Biczak, B. Herman, A. Smylla, P. Kurcok, G. Adamus, M. Kowalczuk, Environmental Degradation of Polyester Blends Containing Atactic Poly(3-hydroxybutyrate). Biodegradation in Soil and Ecotoxicological Impact, Biomacromolecules, 7, 3125-3131 (2006).
【26】M. D. Timmer, C. G. Ambrose, A. G. Mikos, In vitro degradation of polymeric networks of poly(propylene fumarate) and the cross-
linking macromer poly(propylene fumarate)-diacrylate, Biomaterials, 24, 571-577 (2003).
【27】J. P. Fisher, T. A. Holland, D. Dean, A. G. Mikos, Photoinitiated Cross-Linking of the Biodegradable Polyester Poly(propylene fumarate). Part II. In Vitro Degradation, Biomacromolecules, 4, 1335-1342 (2003).
【28】A. J. Domb, N. Manor ,O. Elmalak, Biodegradable bone cement compositions based on acrylate and epoxide terminated poly
(propylene fumarate) oligomers and calcium salt compositions, Biomaterials, 17, 411-417 (1996).
【29】S. J. Peter, L. J. Suggs, P. S. Engel, A. G. Mikos, United States Patent, US 6,355,755 B1 (2002).
【30】S. J. Peter, S. T. Miller, G. Zhu, A. W. Yasko, A. G. Mikos, In vivo degradation of a poly(propylene fumarate)/β-tricalcium phosphate injectable composite scaffold, Biomaterials 24th Annual Meeting San Diego, CA, April 22-26 (1998).
【31】S. Jo, P.S. Engel, A.G. Mikos, Synthesis of poly(ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide, Polymer , 41, 7595-7604, (2000).
【32】C. R. Elati, N. Kolla, P. J. Vankawala, S. Gangula, S. Chalamala, V. Sundaram, A. Bhattacharya, H. Vurimidi, V. T. Mathad, Substrate Modification Approach to Achieve Efficient Resolution:
Didesmethylcitalopram: A key Intermediate for Escitalopram, Org. Process Res. Dev. 11, 289-292 (2007).
【33】W. M. Edward, I. M. Robinson, US Pat. 2710853. (1955).
【34】K. H. Yu, Y. H. Yoo, J. M. Rhee, M. H. Lee, S. C. Yu, Synthesis of poly((amic acid)-co-(amic ester)) precursors and studies of their imidization using FT-IR and FT-Raman spectroscopy, Mat Res Innovat, 7, 51-56 (2003).
【35】T. A. Shantalii, I. L. Karpova, K. S. Dragan, E. G. Privalko, V. P. Privalko, Synthesis and thermomechanical characterization of polyimides reinforced with the sol-gel derived nanoparticles, Sci. Technol. Adv. Mater. 4, 115-119 (2003).
【36】J. C. Milano, S. Mekkid, Synthese de bismaleimides et polybis-
maleimides a pont siloxanique-reactivite et tenue thermique, Eur Polym. J. 33, 1333-1340 (1997).
【37】J. Bibiao, H. Jianjun, W. Wenyun, J. Luxia, C. Xinxian, Synthesis and properties of novel polybismaleimide oligomers, Eur Polym. J. 37, 463-470 (2001).
【38】J. Y. Zhang, I. W. Boyd, UV light-induced deposition of low dielectric constant organic polymer for interlayer dielectrics, Opt. Mater. 9, 251-254 (1998).
【39】K. E. Uhrich, A. Gupta, T. T. Thomas, C. T. Laurencin, R. Langer, Synthesis and Characterization of Degradable Poly(anhydride
-co-imides), Macromolecules, 28, 2184-2193 (1995).
【40】K. E. Uhrich, S. E. M. Ibim, D. R. Larrier, R. Langer, C. T. Laurencin, Chemical changes during in vivo degradation of poly(anhydride-imide) matrices, Biomaterials, 19, 2045-2050 (1998).
【41】M. Ree, Y. H. Park, T. J. Shin, T. L. Nunes, W. Volksen, Self-
adhesion of poly(4,4’-oxydiphenylene biphenyltetracarboximide) and its adhesion to substrates, Polymer, 41, 2105-2111 (2000).
【42】W. Jang, C. Lee, S. Sundar, Y. G. Shul, H. Han, Thermal and hydrolytic stability of sulfonated polyimide membranes with varying chemical structure, Polym. Degrad. and Stab. 90, 431-440 (2005).
【43】J. S. Choi, W. H. Park, Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate), Polymer Testing, 23, 455-460 (2004).
【44】J. Pena, T. Corrales, I. I. Barba, A. L. Doadrio, M. V. Regı´, Long term degradation of poly(ε-caprolactone) films in biologically related fluids, Polym. Degrad. and Stab. 91, 1424-1432 (2006).
【45】G. S. Mugnozza, E. Schettini, G. Vox, M. Malinconico,B. Immirzi, S. Pagliara,, Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment, Polym. Degrad. and Stab. 91, 2801-2808 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔