[1]E. Doernenburg and W. Strittmatter, “Monitoring Oil Cooling Transformers by Gas Analysis,” Proceedings of Brown Boveri Review, Vol 61, May 1974, p.p.238-247.
[2]IEEE Std.C57.104-1991, ”IEEE Guide for The Interpreation of Gases Generated In Oil-Immersed Transformers,” Proceedings of Transformers Committee of the IEEE Power Engineering Society. Nov. 1991.
[3]J.J. Kelly, “Transformer Fault Diagnosis by Dissolved-Gas Analysis,” Proceedings of IEEE Transactions on Industry Applications,Vol. 16, Dec. 1980, p.p.777-782.
[4]IEC Publication 599, ”Interpreation of the Analysis of Gases in Transformers and Other Oil-Filled Electrical Equipment in Service,” First Edition 1978.
[5]童耀宗,變壓器油取樣與油中氣體分析,台電綜合研究所2005年9月。
[6]S.A. Ward, “Evaluating Transformer Condition Using DGA Oil Analysis,” Proceedings of IEEE 2003 Electrical Insulation and Dielectric Phenomena, 2003, p.p.463 – 468.
[7]J.L. Guardado, J.L. Naredo, P. Moreno, and C.R. Fuerte, “A Comparative Study of Neural Network Efficiency in Power Transformers Diagnosis Using Dissolved Gas Analysis,” IEEE Transactions on Power Delivery, Vol. 16, Issue 4, Oct. 2001, p.p.643-647.
[8]石慶男,以多層支撐向量機結合株落選擇演算法建構電力變壓器故障診斷系統,國立高雄應用科技大學電機工程系碩士班碩士論文,2006年7月。[9]M.dual and C. Lamarre, “The Characterization of Electrical Insulating Oils by High-Performance Liquid Chromatography,” IEEE Transactions on Electrial Insulation,Vol. 5, Oct. 1977, p.p.340-348.
[10] V.G. Arakelian, “The Long Way to the Automatic Chromatographic Analysis of Gases Dissolved in Insulating Oil,” Proceedings of IEEE Electrical Insulation Magazine, Vol. 20, Issue 6, Nov.-Dec. 2004, p.p.8 – 25.
[11]黃美玲,陳幸宜,陳貴琳,李雅雯,類神經網路輔助醫療診斷分類模式之建構,中華民國品質學會第42屆年會暨第12屆全國品質管理研討會論文集,2006年4月,p.p.1-12。
[12]R. Aggrawal and Y. Song, “Artificial Neural Networks in Power System,” Proceedings of Power Engineering Journal, June 1997,p.p.7-31.
[13]王進德,類神經網路與模糊控制理論入門與應用,全華科技圖書股份有限公司,2007年1月。
[14]葉怡成,應用類神經網路,儒林圖書有限公司,2001年3月。
[15]葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,2004年4月。
[16]C. Cortes and V. Vapnik, ”Support Vector Network,” Proceedings of the College of Information Sciences and Technology at Penn State, June 1995, p.p.273-295.
[17]J.W. Lu, K.N. Platanitotis, and A.N. Venetsanopoulos, “Face Recognition Using Feature Optimization and Support Vector Learning Neural Networks for Signal Processing XI,” Proceedings of the 2001 IEEE Signal Processing, Sep. 2001, p.p.372-382.
[18]H. Hu, “Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb” IEEE Transactions on Biomedical Engineering, Vol. 55, Issue 8, Aug. 2008, p.p.1956 – 1965.
[19]K. Jung, H. P. Se, and H. J. Kim, “Support Vector Machines for Texture Classification” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, Issue 11, Nov. 2002, p.p.1542 – 1550.
[20]朱映霖,利用支撐向量機改善最小錯誤鑑別式之語者辨識方法,國立中央大學電機工程研究所碩士論文,2007年5月。[21]馬云潜,張學工,”支撐向量機函數擬合在分形插值中的應用,”中國清華大學學報,2000年4月, p.p.76-78.
[22]林長青,支撐向量機應用於科學探索,國立雲林科技大學電子與資訊工程研究所碩士論文,2003年6月。