(3.238.186.43) 您好!臺灣時間:2021/03/05 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡羽
研究生(外文):Yu Tsai
論文名稱:海流發電系統之永磁同步發電機及轉換器負載特性分析
論文名稱(外文):Characteristics of Permanent Magnet Synchronous Generator and Load of Conventer of Ocean Current Power Generation System
指導教授:蘇琨祥蘇琨祥引用關係
指導教授(外文):Kun-Shian Su
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系博碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:126
中文關鍵詞:永磁同步發電機海流發電田口法雙反應曲面法
外文關鍵詞:Permanent magnet synchronous generatorOcean current power generationTaguchi methodResponse surface method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:769
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文主要著重於海流發電系統的研究,在實驗設置中,一造流單元係由一具有4噸含水量的水槽所構成,藉以評估海流能對一永磁同步發電機之發電量的影響。該永磁同步發電機可由一般傳統的電機試驗方式及交、直軸參數量測方式獲得電機特性參數,並藉由該些電機特性之參數進一步評估該海流發電系統之可行性。測試海流發電系統後級轉換器之容量,利用兩套轉換器以背對背連接,再串接一負載箱作為測試,此種設計的負載箱只需要驅動器總容量的十分之一,可以大大降低測試成本。為了達到較佳發電效能,本文將利用田口方法及雙反應曲面法對海流發電系統之負載、水流流速及齒輪比等參數進行上述目的的最佳化設計。
This thesis emphasizes the evaluation of an ocean current power generation system. In experimental setup, an ocean current producing unit with an 4 ton capacity water tank is constructed to evaluate the power generated by the ocean current energy for a permanent magnetism synchronous generator (PMSG). In this thesis, the PMSG uses several machinery tests such as the locked-rotor test, the short-circuit test, QD model, and so on to obtain the electrical characteristics so as to further evaluate the power generation performance by using these characteristics. A useful test configuration for testing power capacity of the ocean current power generation system will be also proposed in this thesis. The test configuration consists of two converters and a load. The two converters are formed back-to-back connecting configuration and then serially connected with the load. The load demand is only tenth of each converter demand so as to decrease the test cost by using the test configuration. In this thesis, three factors including load, flowing velocity of ocean current, and gear ratio will be selected to evaluate the optimal design so as to provide a preferred power generation performance by using Taguchi method and response surface method respectively.
摘 要 I
Abstract II
致 謝 III
目 錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 研究背景與目的 1
1.2研究動機 2
1.3國內外技術發展現況及未來趨勢 3
1.3.1 水平軸向海流渦輪機 3
1.3.2 螺旋海流渦輪機 4
1.3.3 其他形式之海洋能 5
1.3.4 最大功率追蹤技術 6
1.3.5 電能轉換技術 7
1.3.6 單晶片應用技術 7
1.3.7 回授控制技術 7
1.4 論文架構 8
第二章 海流發電系統 10
2.1 海流發電系統架構 10
2.2 直流電機模擬水輪機實驗 10
2.3 水槽模擬海流實驗 13
2.4 交流永磁同步機參數量測 16
2.5 交流永磁同步機三相系統之數學模式 21
2.6 交流永磁同步機之交、直軸數學模式 23
2.6.1 靜止座標軸轉換之交、直軸模式 25
2.6.2 轉子旋轉座標軸轉換之交、直軸模式 26
2.6.3 交流永磁同步機交、直軸參數量測 27
2.6.4無轉子位置回授之參數量測 31
2.6.5參數量測結果與比較 32
2.7最大功率追蹤法介紹 33
第三章 虛擬負載測試電路 35
3.1直流降壓(BUCK)對直流升壓(BOOST)負載測試控制流程 35
3.2單相交流轉換器對單相交流轉換器負載測試控制流程程 36
3.3三相交流轉換器對三相交流轉換器負載測試控制流程 37
3.4直流降壓對直流升壓負載測試電路 38
3.5單相交流轉換器對單相交流轉換器負載測試電路 53
3.6三相交流轉換器對三相交流轉換器負載測試電路 55
3.7 其他輔助電路 56
3.7.1 驅動級電路 56
3.7.2輔助電源電路 59
3.7.3 電感繞線設計 61
第四章 軟體控制流程 65
4.1單晶片微處理機介紹 65
4.1.1 高功能、改良式精簡指令集的中央控制器 67
4.1.2 數位信號處理(DSP)引擎功能 68
4.1.3 週邊功能 68
4.1.4 馬達控制波寬調變模組功能 68
4.1.5 定位編碼器QEI(Quadrature Encoder Interface)介面模組功能 71
4.1.6 類比功能 72
4.1.7 特殊的微控制器功能 72
4.1.8 CMOS技術 73
4.1.9 MPLAB介紹 73
第五章 實驗結果分析與探討 75
5.1海流發電系統之直流功率量測 75
5.2直流降壓對直流升壓負載測試 87
5.3單相交流轉換器對單相交流轉換器負載測試 89
5.4三相交流轉換器對三相交流轉換器負載測試 92
第六章 實驗設計方法 95
6.1 田口品質工程 95
6.2雙反應曲面法 100
6.2.1實驗設計組合表 102
6.2.2模型建構 102
6.2.3雙反應曲面法參數優化:平均值與變異數之最佳化 103
6.2.4結果分析 104
6.2.5模型建構 106
6.2.6參數設計 111
第七章 結論與未來展望 112
7.1 結論 112
7.2 未來展望 113
參考文獻 115
附錄一-詞彙中英對照(依照出現順序) 120
附錄二-變數定義(依照出現順序) 122
作者簡歷 126
[1]H. Oman, “Magnetic braking of the Earth's rotation,” in IEEE Aerospace and Electronic Systems Magazine, Vol. 4, Issue 4, April 1989, pp.3-10.
[2]J. Werner, M. Evans and T. Bethem, “Real-time Narrative Summaries for NOAA’s PORTS®,“ Proceedings of MTS/IEEE, Sept. 2005, pp.1-3.
[3]A.D. Trapp and M. Watchorn, “EB development of tidal stream energy,” in Proceedings MAREC 2001, p. 169-173, 2001.
[4]A.T. Jones and A. Westwood, “Economic Forecast for Renewable Ocean Energy Technologies,” presented at EnergyOcean 2004, Palm Beach, Florida, 2004.
[5]A.T. Jones and W. Rowley, “Global Perspective: Economic Forecast for Renewable Ocean Energy technologies,” MTS Journal, vol. 36. no. 4, pp. 85-90, Winter 2002.
[6]S. E. Elghali Ben, M. E. H. Benbouzid and J. F. Charpentier,“Marine Tidal Current Electric Power Generation Technology: State of the Art and Current Status,” IEEE International on Electric Machines & Drives Conference 2007, Vol. 2, May 2007, pp.1407-1412.
[7]Jung-Chien Li, “A rational complex frequency domain model for the completely transposed transmission line with initial voltage and current distributions,” IEEE Trans. on Circuits and Systems, Vol. 42, Issue 4, Apr. 1995, pp.223-225.
[8]L. Drouen, J. F. Charpentier, E. Semail, and S. Clenet,“Study of an innovative electrical machine fitted to marine current turbines,”Europe Oceans 2007, June 2007, pp.1-6.
[9]P. Vauthier, “The underwater electric kite East River deployment, “IEEE Proceedings on 88’ Oceans, vol. 3, Nov. 1988, pp.1029-1033.
[10]國立台灣海洋大學海洋教育網網頁http://sea.ntou.edu.tw/03maritime/maritime02_02.php, 07/14/2007.
[11]K.Harada, G. Zhao,“Controlled Power Interface Between Solar Cells and AC Source,”IEEE Trans. On Power Electronics, Vol. 8, No. 4, Oct. 1993,pp. 654-662.
[12]http://www.marineturbines.com/home.htm (last assessed January 2007)
[13]A.M. Gorlov, “The Helical Turbine and its applications for tidal and wave power,” in Proceedings of IEEE OCEANCS'03, vol. 4, pp. 1996, San Diego (USA), September 2003.
[14]http://www.wavestarenergy.com/(last assessed December 2007)
[15]E. Margato and J. Santana, “Induction generator excited by current source inverter used as a DC power supply-modelling and behaviour,” IEEE International Symposium on Industrial Electronics, Vol. 2, June 1996, pp.814-819.
[16]P. Misra, “Problems in EMI control of power electronics for futuristic offshore fixed and floating energy platforms,” IEEE International Conference on Electromagnetic Interference and Compatibility, Dec. 1995, pp.416-422.
[17]P. A. Singer, J. Y. Dea, K. J. Cain and T. Schlosser, “Technology advances in VLF/LF atmospheric noise generation and characterization far laboratory use,” IEEE Conference Proceedings on Instrumentation and Measurement Technology, Vol. 2, May 1994, pp. 499-501.
[18]J. Crowell, “Battery arrays, rechargable Li-ion battery power sources for marine applications,” Proceedings of MTS/IEEE, Vol. 1, Sept. 2005, pp.46-51.
[19]R. Lawton, J. F. Bash and S. M. Barnett, “Marine applications of fuel cells,” IEEE on Oceans, Vol. 3, Oct. 2002, pp.1784-1790.
[20]H. J. Beukes and J. H. R. Enslin,“Analysis of a New Compound Converter as MPPT, Battery Regulator and Bus Regulator for Satellite Power Systems,”Proceedings of the IEEE Power Electronics Specialists Conf., June 1993, pp. 846-852.
[21]F. Harashima, H. Inaba and N. Takashima,“Microprocessor-Controlled SIT Inverter for Solar Energy System,”IEEE Trans. On Industrial Electronics, Vol. IE-34, NO. 1,Feb. 1987, pp. 50-55.
[22]K. Harada and G. Zhao,“Controlled Power Interface Between Solar Cells and AC Source,”IEEE Trans. On Power Electronics, Vol. 8, No. 4, Oct. 1993,pp. 654-662.
[23]Ned Mohan,Power Electronics and Drivers,2003.
[24]W. Hart Daniel, Introduction to Power Electronic, 1998.
[25]K. Ouchi and T. Yamatogi, “A study on the entrainment with density current generator,” Oceans MTS Conference and Exhibition of IEEE, Sept. 11-14, 2000, pp.787-790.
[26]H. Polinder, M.E.C. Damen and F. Gardner, “Linear PM Generator system for wave energy conversion in the AWS,” IEEE Trans. on Energy Conversion, Vol. 19, Issue 3, Sept. 2004, pp.583-589.
[27]G.D. Marques, “Stability study of the slip power recovery generator applied to the sea wave energy extraction,” 23rd Annual of IEEE Power Electronics Specialists Conference,Vol. 1, July 1992, pp.732-738.
[28]M. Kentaro, S. Toru and T. Shigeru, “Numerical Evaluation on the Effect of Density Current Generator to Oxygen-Deficient Water in Ariake Sea,” Asia Pacific Oceans, May 2007, pp.1-5.
[29]T. Omholt, “A Wave Activated Electric Generator,” IEEE on Oceans, Vol. 10, Sep. 1978, pp.585-589.
[30]Y. Masuda,T. Yamazaki,Y. Outa and M. McCormick, “Study of Backward Bent Duct Buoy,” IEEE on Oceans, Vol. 19, Sep. 1987, pp.384-389.
[31]J. C. McCall, “Advances in National Data Buoy Center technology,” IEEE Conference Proceedings on 98’ Oceans, Vol. 1, Oct. 1998, pp.544-548.
[32]林新發,變頻洗衣機之直驅式扁平馬達最佳實驗設計法,國立高雄第一科技大學機械與自動化工程研究所碩士論文,民國96年7月。
[33]康宗仁,永磁式同步發電機之風力發電功率控制系統之研製,國立台灣科技大學電機研究所碩士論文,民國94年。
[34]C. Paul Krause, Analysis of Electric Machinery, McGraw-Hill,New York,1987.
[35]Chee-Mun Ong, Dynamic Simulation of Electric Machinery, Prentice Hall,1998.
[36]許哲嘉,永磁式同步電動機之參數量測,國立台灣科技大學電機工程研究所碩士論文,民國91年5月
[37]H. P. Nee, L. Lefevre, P. Thelin and J. Soulard, “Determination of d and q reactances of permanent-magnet synchronous motors without measurements of the rotor position,” IEEE Transactions on Industry Applications, vol.36, no.5, pp.1130-1135,2000.
[38]Z. Salameh, F. Dagher and W. A. Lynch, “Step-Down Maximum Power Point Tracker for Photovoltaic System,”Solar Energy, Vol. 46, No. 1, 1991, pp. 278-282.
[39]Z. Salameh, F. Dagher and W. A. Lynch, “Step-Down Maximum Power Point Tracker for Photovoltaic System,”Solar Energy, Vol. 46, No. 1, 1991, pp. 278-282.
[40]F. Harashima, H. Inaba and N. Takashima, “Microprocessor-Controlled SIT Inverter for Solar Energy System,”IEEE Trans. On Industrial Electronics, Vol. IE-34, NO. 1, Feb. 1987, pp. 50-55.
[41]K. H. Hussein, I. Muta, T. Hoshino and M. Osakada, “Maximum Photovoltaic Power Tracking: an algorithon for rapidly changing atmospheric conditions,” IEEE proc. Gener. Transm. Distrib, Vol. 142, NO. 1, Jan. 1995, pp. 59-64.
[42]潘晴財,並聯於電力系統之住宅用太陽光發電系統之研製,行政院國家科學委員會研究計畫成果摘要報告。
[43]劉智偉,太陽光電能驅動之調光電子安定器設計與製作,國立中正大學電機研究所碩士論文,民國86年。
[44]陳家宏,太陽能電池最大功率點追蹤之設計與製作,私立淡江大學電機研究所碩士論文。
[45]洪培均,太陽能發電系統雙向能量轉換器之研製與最佳化實驗設計,國立高雄第一科技大學機械與自動化工程研究所碩士論文,民國96年7月。
[46]吳財福,張健軒,陳裕愷,太陽能供電與照明系統綜論,全華圖書,民國89 年1 月。
[47]Ned Mohan,“Power Electronics and Drivers,”2003.
[48]曾百由, ds-PIC 數位訊號控制器原理與應用,宏友圖書開發股份有限公司。
[49]User Guide 51284d, Microchip.
[50]葉怡成,實驗計劃法-製程與產品最佳化,五南,台北,2001。
[51]Barker, Quality Engineering by Design: Taguchi’s Philosophy, Quality Progress, T.B., 1986.
[52]H. Raymond Myers and C. Douglas, “Response surface methodology : process and product optimization using designed experiments,” Wiley, New York, 1995.
[53]K. Koyamada, K. Sakai and T. Itoh, “Parameter Optimization Technique Using The Response Surface Methodology,” Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004, pp.2909-2912.
[54]H. Raymond Myers, C. Douglas Montgometry, “Response Surface Methodology,” John Wiley & Sons. Inc, 1995.
[55]C. Douglas Montgomery, “Design and Analysis of Experiments 4th edition,” John Wiley & Sons Inc, 1996.
[56]M. Kuzuno, T. Nishio, K. Koyamada and T. Nishio, ”A thermal compact modeling method using Response Surface Methodology with Genetic Algorithm,” PDPTA, CISST & IC-AI International Conferences, 2000, pp.627-634.
[57]M. Kuzuno, T. Nishio and K. Koyamada, ”Compact modeling for Thermal Simulation Using Response Surface Methodology,” International Symposium on Computational Technologies for Fluid/Thermal/Chemical Systems With Industrial Applications,” PVP-vol. 424-2, 2001, pp.57-63.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔