跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/13 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊佳儒
研究生(外文):Yang, Jia-Ru
論文名稱:樓房採用基礎與層間複合隔震系統之振動抑制
論文名稱(外文):Vibration Reduction of Building Using Base and Mid-Story Hybrid Isolated Systems
指導教授:黃立政黃立政引用關係
指導教授(外文):Huang, Li-Jeng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
中文關鍵詞:樓房系統基礎隔震層間隔震複合隔震鉛心橡膠支承墊振動抑制
外文關鍵詞:Building SystemsBase IsolationMid-story IsolationMulti-Stories IsolationLead Rubber BearingVibration Reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樓房之耐震性能及隔震理論與技術之研發為近年來非常重視之課題。本研究旨在探討基礎隔震,中間層隔震,頂層隔震及多層隔震等不同隔震方式樓房系統受到各種外力下的動力反應行為。未隔震與隔震樓房系統均以集結質量模型(Lumped Mass Models)模擬,分別以各樓層之水平位移為自由度。使用鉛心橡膠支承墊(Lead Rubber Bearing, LRB)分別作為基礎隔震、層間隔震及複合隔震,並探討應用在樓房系統承受各種外力作用下(包括自由振動、步階外力、諧和外力與El Centro地表加速度)造成的樓層變位及加速度歷時反應抑制可行性。文中並先以一單層樓房分別採用基礎隔震及層間隔震,初步探討隔震層於不同安置位置,對於結構體之影響,由結果發現,採用柔軟的隔震墊對於基礎隔震系統能減少結構體所受之地震力、降低振動頻率及延長週期;而二自由度之頂層隔震系統中,當隔震墊勁度較結構體本身小時,上部隔震層對於主結構亦有減震之效果,較傾向於被動式調諧質量阻尼器之制振機制。其次針對本研究主題建立八種隔震樓房案例的動力方程式,並將所得到之二階聯立方程式以一階狀態空間矩陣式表示,使用四階Runge-Kutta分析系統歷時反應,最後針對隔震層參數變化進行探討。本研究結果證實採用全樓層複合隔震系統及基礎與層間複合隔震系統於層間位移及層間加速度歷時反應抑制上,更優於單一基礎隔震系統與單一層間隔震系統;適當調整隔震層的參數,顯示出改變隔震層上層版質量( )對樓房系統振動抑制效果較為不佳;調整隔震墊阻尼比( ),其值越大,於相對位移的抑制上越佳,但將造成層間加速度提升;而改變隔震墊振動頻率( )方面,本研究採用三組參數中發現,以 =2 時,最能兼顧相對位移、層間位移、相對加速度及層間加速度的抑制,頻率過小將使樓房系統於歷時時間後期產生相對位移放大之不穩定情況,頻率增大雖有助於抑制樓層變位,但層間加速度將增加而造成層間位移抑制效果降低。
Recently the aseismic performance of buildings and theories and techniques of earthquake isolation are continuously developed. The thesis is proposed to investigate the dynamic responses of buildings using various isolation approaches, including base isolation, mid-story isolation, multi-stories isolation, etc., under various external loadings. Lumped mass model is employed for simulating the dynamic model of buildings without and with isolation designs wherein horizontal displacement of each story is chosen to be the degree of freedom. Lead Rubber Bearing (LRB) is adopted to be the isolator. Various types of eternal loads are considered, such as free vibration, unit step excitation, harmonic forcing and ground motions. A simplified theoretical model is first employed to depict the fundamental behavior of isolator embedded at base and top-story. It is found that as the mass of top-story isolator is very smaller its behavior is similar to a tuned mass damper (TMD). Then dynamic equations of 8 cases of different layouts of non-isolated and isolated are derived, respectively, and then transformed into state-space descriptions and then Runge-Kutta method is used to calculate the time-domain dynamic responses. Numerical experiments show that the all-stories isolation and base-mid-story isolation systems are better than classical base isolation and mid-story single isolation systems in the inter-story displacements and inter-story accelerations of the floors. Parametric study leads to the fact that adjustment of the mass, damping and stiffness parameters of isolators would cause significant influence of dynamic response of the systems. Mass effect is relatively smaller, damping constants are effectively in reducing the displacements, while frequency ratio =2 is the best choice in the current case.
1.Abbas, Maleki, (2007), “Damping enhancement of seismic isolated cylindrical liquid storage tanks using baffles,” Engineering Structures, Vol.29, No.12, pp.3227-3240.
2.Alfonso, Vulcano, (1998), “Comparative study of the earthquake and wind dynamic responses of base-isolated buildings,” Journal of Wind Engineering and Industrial Aerodynamics.
3.Arturo, Tena-Colunga, (2007), “Torsional amplifications in asymmetric base-isolated structures,” Engineering Structures, Vol.29, No.2, pp.237-247.
4.Arturo, Tena-Colunga, (2006), “Dynamic torsional amplifications of base-isolated structures with an eccentric isolation system,” Engineering Structures, Vol.28, No.1, pp.72-83.
5.Arturo, Tena-Colunga, (2002), “Torsional response of base-isolated structures due to asymmetries in the superstructure,” Engineering Structures, Vol.24, No.12, pp.1587-1599.
6.Bo, Liang, (2002), “Wind effects on habitability of base-isolated buildings,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.90, No.12-15, pp.1951-1958.
7.Casas, J. R., (2006), “A direct displacement-based method for the seismic design of bridges on bi-linear isolation devices,” Engineering Structures, Vol.28, No.6, pp.869-879.
8.Chang, Kuo-Chun, (2007), “Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings,” Engineering Structures, Vol.29, No.5, pp.694-702.
9.張國鎮,(2008),「建築物中間層隔震之實驗與分析」,建築物層間隔震系統研討會,II-1~ II-38頁。
10.張國鎮、何明錦、黃震興、詹添全、陶其駿、汪向榮,(2007),「台灣建築隔減震技術之發展與應用」,中華民國建築學會「建築學報」,第62期,133~148頁。
11.張國鎮,(2005),「建築物隔震設計規範簡介」,建築物耐震設計規範說明會。
12.Chatterjee, S., (2004), “Effect of high-frequency low-amplitude vibration on the performance of a class of semi-active base isolation systems with on–off damping,” Journal of Sound and Vibration, Vol.274, No.3-5, pp.893-914.
13.Chaudhary, M. T. A., (2002), “Investigation of atypical seismic response of a base-isolated bridge,” Engineering Structures, Vol.24, No.7, pp.945-953.
14.Chaudhary, M. T. A., (2002), “Role of structural details in altering the expected seismic response of base-isolated bridges,” Mechanical Systems and Signal Processing, Vol.16, No.2-3, pp.413-428.
15.Chaudhary, M. T. A., (2001), “Identification of soil-structure interaction effect in base-isolated bridges from earthquake records,” Soil Dynamics and Earthquake Enginerring, Vol.21, No.8, pp.713-725.
16.Chaudhary, M. T. A., (2001), “Performance evaluation of base-isolated Yama-agé bridge with high damping rubber bearings using recorded seismic data,” Engineering Structures, Vol.23, No.8, pp.902-910.
17.陳貴麒,(2004),「速度相依及位移相依之組合式阻尼器於建築結構系統之防震效益」,逢甲大學博士論文。
18.陳乙震,(2008),「壓電式可變摩擦阻尼器之實驗與分析」,國立高雄第一科技大學碩士論文。
19.陳逸隆,(2009),「鋼筋混凝土建築物裝設被動消能系統與隔震系統地震反應比較之研究」,中國文化大學碩士論文。
20.陳永祥、李森柟,(2005),「隔震支承平台簡介與應用」,國立台灣大學嚴慶齡工業發展基金會合設工業研究中心。
21.江恩暉,(2007),「液流阻尼器與調諧質量阻尼器系統共構之耐震分析」,國立成功大學碩士論文。
22.邱顯介,(1999),「高阻尼橡膠支承之試驗與分析」,逢甲大學碩士論文。
23.El-Sinawi, A. H., (2004), “Active vibration isolation of a flexible structure mounted on a vibrating elastic base,” Journal of Sound and Vibration, Vol.271, No.1-2, pp.323-337.
24.Falsone, G., (2006), “Best performing parameters of linear and non-linear seismic base-isolator systems obtained by the power flow analysis,” Computers and Structures, Vol.84, No.31-32, pp.2291-2305.
25.Goodarz, Ahmadi, (2004), “Optimal preview active control of structures during earthquakes,” Engineering Structures, Vol.26, No.10, pp.1463-1471.
26.Hart, G. C., Wong, Kevin, (2000), “Structural Dynamics for Structural Engineers (16th ed.),” California: Los Angeles.
27.Gavin, H. P., (2005), “Reliability of base isolation for the protection of critical equipment from earthquake hazards,” Engineering Structures, Vol.27, No.9, pp.1435-1449.
28.Huang, X., (2003), “Active isolation of a flexible structure from base vibration,” Journal of Sound and Vibration, Vol.263, No.2, pp.357-376.
29.Hwang, J. S., (1996), “An Equivalent Linear Model of Lead-Rubber Seismic Isolation Bearings,” Engineering Structures, Vol.18, No.7, pp.528-536.
30.Ivo, Caliò, (2003), “Seismic response of multi-storey buildings base-isolated by friction devices with restoring properties,” Computers and Structures, Vol.81, No.28-29, pp.2589-2599.
31.Jangid, R. S., (2007), “Optimum lead–rubber isolation bearings for near-fault motions,” Engineering Structures, Vol.29, No.10, pp.2503–2513.
32.Jangid, R. S., (2004), “Influence of isolator characteristics on the response of base-isolated structures,” Engineering Structures, Vol.26, No.12, pp.1735-1749.
33.Jangid, R. S., (2004), “Seismic analysis of base-isolated liquid storage tanks,” Journal of Sound and Vibration, Vol.275, No.1-2, pp.59–75.
34.Jangid, R. S., (2003), “Seismic response of base-isolated structures during impact with adjacent structures,” Engineering Structures, Vol.25, No.10, pp.1311-1323.
35.Jangid, R. S., (2002), “Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation,” Nuclear Engineering and Design, Vol.217, No.1-2, pp.1–20.
36.Jinping, Ou., (2007), “Vibration control of steel jacket offshore platform structures with damping isolation systems,” Engineering Structures, Vol.29 , No.7, pp.1525-1538.
37.Juan, C. L., (2008), “Base–structure interaction of linearly isolated structures with lateral–torsional coupling,” Engineering Structures, Vol.30, No.1, pp.110-125.
38.Lee, In-Won, (2002), “A comparative study on aseismic performances of base isolation systems for multi-span continuous bridge,” Engineering Structures, Vol.24, No.8, pp.1001–1013.
39.Lin, Yu-Yuan, (2007), “Statistical study on damping modification factors adopted in Taiwan’s seismic isolation design code by using the 21 September 1999 Chi-Chi earthquake, Taiwan,” Engineering Structures , Vol.29, No.5, pp.682-693.
40.林谷屏,(2003),「橡膠層墊對結構系統隔震效應之研究」,國立成功大學碩士論文。
41.劉紹魁,(2008),「中間層隔震建築結構設計實例(以四季天韻為例)」,建築物層間隔震系統研討會,III-1- III-31頁。
42.Lu, Lyan-Ywan, (2008), “Stiffness controllable isolation system for near-fault seismic isolation,” Engineering Structures, Vol.30, No.3, pp.747-765.
43.Luo, N., (2000), “Output feedback sliding mode control of base isolated structures,” Journal of the Franklin Institute, Vol.337, No.5, pp.555-577.
44.Mak, C. M., (2007), “A study of the effect of inertia blocks on the stability of the vibratory system and the performance of vibration isolation,” Applied Acoustics, Vol.68, No.11-12, pp.1511–1524.
45.Moon, Kyum, Kim, (2004), “Seismic response of base-isolated liquid storage tanks considering fluid–structure–soil interaction in time domain,” Soil Dynamics and Earthquake Engineering, Vol.24, No.11, pp.839-852.
46.Moon, Kyum, Kim, (2002), “Seismic analysis of base-isolated liquid storage tanks using the BE–FE–BE coupling technique,” Soil Dynamics and Earthquake Engineering, Vol.22, No.9-12, pp.1151–1158.
47.穆如蘭,(1996),「主動式調諧質量阻尼器應用於樓房結構控制之研究」,中原大學碩士論文。
48.Nakhaie, Jazar, G., (2006), “Optimization of secondary suspension of piecewise linear vibration isolation systems,” International Journal of Mechanical Sciences, Vol.48, No.4, pp.341–377.
49.Niedzwecki, J. M., (2007), “Earthquake induced pounding in friction varying base isolated buildings,” Engineering Structures, Vol.29, No.11, pp.2825-2832.
50.Phocas, M. C., (2007), “Earthquake isolator with progressive nonlinear deformability,” Engineering Structures, Vol.29, No.10, pp.2586-2592.
51.Plaut, R. H., (2008), “Vibration isolation using buckled or pre-bent columns—Part 1: Two-dimensional motions of horizontal rigid bar,” Journal of Sound and Vibration, Vol.310, No.1-2, pp.409-420.
52.Providakis, C. P., (2008), “Pushover analysis of base-isolated steel–concrete composite structures under near-fault excitations,” Soil Dynamics and Earthquake Engineering, Vol.28, No.4, pp.293–304.
53.Satish, Nagarajaiah, (2005), “A STFT semiactive controller for base isolated buildings with variable stiffness isolation systems,” Engineering Structures, Vol.27, No.4, pp.514–523.
54.Shakib, H., (2003), “Effect of vertical component of earthquake on the response of pure-friction base-isolated asymmetric buildings,” Engineering Structures, Vol.25, No.14, pp.1841-1850.
55.蕭賀方,(2002),「基礎隔震對房屋結構的耐震效益研究」,國立成功大學碩士論文。
56.謝榮修,(1988),「隔震樓房之耐震行為」,國立台灣大學碩士論文。
57.蔡益超,(2008),「建築物中間層隔震之特性」,土木水刊雙月刊,第三十五卷,第四期,117-122頁。
58.蔡崇興,(2000),「高阻尼多層橡膠支承與鉛擠阻尼器之理論分析與實驗比較」,逢甲大學碩士論文。
59.Tsai, Hsiang-Chuan, (1995), “The effect of tuned-mass dampers on the seismic response of base-isolated structures,” International Journal of Solids & Structures, Vol.32, No.8-9, pp.1195-1210.
60.楊文豪,(2005),「隔震樓房反應之計算」,國立中央大學碩士論文。
61.Yun, Chung-Bang, (1997), “Shaking Table and Pseudodynamic Tests for The Evaluation of The Seismic Performance of Base-Isolated Structures,” Engineering Structures, Vol.21, No.4, pp.365-379.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊