(3.232.129.123) 您好!臺灣時間:2021/03/04 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張俊傑
研究生(外文):Chun-Chieh Chang
論文名稱:不可壓縮性流體之液滴成形研究
論文名稱(外文):A study on incompressible fluid droplet formation
指導教授:林昭文林昭文引用關係
指導教授(外文):Jau-Wen Lin
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:148
中文關鍵詞:噴墨印表機液滴成形流體體積法
外文關鍵詞:inkjet printerdroplet formationVolume of Fluid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:608
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要研究不可壓縮之牛頓流體,模擬液滴藉由噴墨系統噴出。為了讓液滴形狀變化的過程更加準確,有必要配合理論的基礎,建立一套完整的數學模式,藉以尋求最佳的製程參數。本文將針對不同入口最大壓力、不同表面張力、不同黏滯係數、不同噴嘴孔徑及不同平板速度對於液滴之影響來進行研究,探討液滴生成、液滴在飛行的過程及撞擊底板之形狀變化。在數值方法計算上,使用有限體積法以離散控制方程式計算流體運動,以求解連續方程式和動量方程式,並利用分離-隱式(segregated-implicit)法求解統御方程式。在液滴受到擠壓噴出的飛行形狀變化因為包含了空氣與液滴兩相的問題,且曲率變化大,為了有效地模擬這些現象,採用流體體積法(VOF)來計算網格內兩相的體積變化,並選用SIMPLEC演算法則求得速度及壓力的分佈。
This research mainly aims at incompressible Newtonian fluid and simulates fluid droplet formation process of inkjet system. In the design of inkjet system, it is important to establish a complete mathematical model to simulate the ejection of fluid and find the best operating condition. This research investigates on different maximum pressures, surface tensions, viscosities, sizes of nozzle and different velocities of rigid body to evaluate the droplet ejection parameters. FVM(Finite Volume Method) is used in this research to calculate fluid motion and solve continuity equation and momentum equation. The governing equations were then solved using segregated-implicit method. The ejecting system of interesting includes liquid and gas. In order to simulate the system with co-exist of two phases, VOF(Volume of Fluid) method is adopted. Using SIMPLEC algorithm solve the distributive of velocity and pressure.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 xiii

第一章 緒論 1
1.1 研究目的與動機 1
1.2 噴墨種類與原理 2
1.2.1 連續式(Continuous) 3
1.2.2 依需求式(Drop-on-Demand) 5
1.3 文獻回顧 13
1.4 本文架構 18

第二章 理論基礎 19
2.1 理論分析 19
2.2 控制方程式 20
2.3 表面張力 20
2.4 自由表面 21
2.5 邊界條件 23
2.5.1 自由液面之邊界條件 23
2.5.2 入口之邊界條件 24
2.5.3 固體壁面之邊界條件 24

第三章 數值分析 26
3.1 數值方法 26
3.1.1 有限差分法(FDM) 26
3.1.2 有限元素法(FEM) 26
3.1.3 有限體積法(FVM) 27
3.2 SIMPLEC演算法則 28
3.3 自由表面處理 31
3.4 步驟與流程 34

第四章 結果分析與討論 36
4.1 模型驗證 36
4.2 物理模型 41
4.3 製程參數對液滴噴射行為之影響分析 44
4.3.1 入口最大壓力對液滴噴射行為之影響 45
4.3.2 表面張力對液滴噴射行為之影響 58
4.3.3 黏滯係數對液滴噴射行為之影響 71
4.3.4 噴嘴孔徑對液滴噴射行為之影響 84
4.3.5 平板速度對液滴噴射行為之影響 97

第五章 總結 110
5.1 結論 110
5.2 未來展望 117

參考文獻 118
附錄A 連續方程式和動量方程式之推導 124
作者介紹 130
[1] Le, H. P., 1998, ”Progress and Trends in Ink-Jet Printing”, Journal of Imaging Science and Technology, Vol. 42, pp. 49-62.
[2] Yeh, Jyi-Tyan, 2000, “Simulation and Industrial Application of Inkjet”, The 7th National Computational Fluid Dynamics Conference, Kenting. pp. 1-7.
[3] Lamb, S. H., 1945, “Hydrodynamics, 6th ed.”, Dover Publications, Inc., New York, pp. 471.
[4] Rayleigh, L., 1892, “On the Instability of a Cylinder of Viscous Liquid under Capillary Force”, Philosophical Magazine, Vol. 34, pp. 145.
[5] Yuen, M. C., 1968, “Non-Linear capillary instability of liquid jet”, J. Fluid Mech., Vol. 33, pp. 151-163.
[6] Nayfeh, A. H., 1970, “Nonlinear stability of a liquid jet”, Phys. Fluids, Vol. 13, pp. 841-847.
[7] Goedde, E. F. and Yuen, M. C., 1970, “Experiments on liquid jet instability”, J. Fluid Mech., Vol. 40, pp. 495-511.
[8] Rutl, D. F. and Jameson, G. J., 1971, “A nonlinear effect in the capillary instability of liquid jets”, J. Fluid Mech., Vol. 46, pp. 267-271.
[9] Lee, H. C., 1974, “Drop Formation in a Liquid Jet”, IBM J. Res. Develop., pp. 364-369.
[10] Pimbley, W. T., 1976, “Drop Formation from a Liquid Jet: A Linear One-Dimensional Analysis Considered as a Boundary Value Problem”, IBM J. Res. Develop., pp.148-156.
[11] Bruce, C. A., 1976, “Dependence of Ink Jet Dynamics on Fluid Characteristics”, IBM J. Res. Develop., pp. 258-270.
[12] Beasley, J. D., 1977, “Model for Fluid Ejection and Refill in an Impulse Drive Jet”, Photogr. Sci. Eng., Vol. 21, pp. 78-82.
[13] Pimbley, W. T. and Lee, H. C., 1977, “Satellite Droplet Formation in a Liquid Jet”, IBM J. Res., Develop., pp. 21-30.
[14] Bugdayci, N., Bogy, D. B. and Talke, F. E., 1983, “Axisymmetric Motion of Radially Polarized Piezoelectric Cylinders Used in Ink Jet Printing”, IBM J. Res. Develop., Vol. 27, No. 2, pp. 171-180.
[15] Bogy, D. B. and Talke, F. E., 1984, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Ink Jet Devices”, IBM J. Res. Develop., Vol. 28, pp. 314-321.
[16] Fromm, J. E., 1984, “Numerical calculation of the fluid dynamics of drop-on-demand jets”, IBM J. Res. Develop. Vol. 28, pp. 323.
[17] Allen, R. R., Meyer, J. D. and Knight, W. R., 1985, “Thermodynamics and hydrodynamics of thermal ink jet”, HEWLETT-PACKARD J. Vol.36, pp. 27.
[18] Adams, R. L. and Roy, J., 1986, “A one-dimensional numerical model of a drop-on-demand ink jet”, J. of Applied Mechanics. Vol. 53, pp.193-197.
[19] Asai, A., Hara, T. and Endo, I., 1987, “One-dimensional model of bubble growth and liquid flow in bubble jet printers”, Jpn. J. Appl. Phys, Vol.26, pp. 1794.
[20] Shield, T. W., Bogy, D. B. and Talke, F. E., 1987, “Drop Formation by DOD Ink-Jet Nozzles: A Comparison of Experiment and Numerical Simulation”, IBM J. Res. Develop., Vol. 31, pp. 96-110.
[21] Asai, A., 1992, “Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer”, ASME, Journal of Fluids Engineering, Vol. 144, pp. 638–641.
[22] Chen, P. H., Chen, W. C. and Chang, S. H., 1997, “Bubble growth and ink ejection process of a thermal ink jet printhead”, International Journal of Mechanical Sciences, Vol. 39, No. 6, pp. 683–695.
[23] Chen, W. C., Chen, P. H. and Chang, S. H., 1997, “Development of droplet string injected by thermal bubble printhead”, Proceeding of 14 th Mechanical Engineering Conference, R.O.C., pp. 70–77.
[24] Chen, P. H., Peng, H. Y., Liu, H. Y., Chang, S. L., Wu, T. I. and Cheng, C. H., 1999, “Pressure response and droplet ejection of a piezoelectric inkjet printhead”, International Journal of Mechanical Sciences, Vol. 41, No. 2, pp. 235–248.
[25] Rembe, C., Wiesche, S. and Hofer, E. P., 2000, “Thermal ink jet dynamics: modeling, simulation, and testing”, Microelectronics Reliability, Vol. 40, pp. 525–532.
[26] Yeh, J. T., 2000, “Simulation and Industrial Applications of Inkjet”, The 7th National Computational Fluid Dynamics Conference.
[27] Yeh, J. T., 2001, “A VOF-FEM and Coupled Inkjet Simulation”, ASME Fluids Engineering Division Summer Meeting, New Orleans, Louisiana.
[28] Wilkes, Edward D. and Basaran, Osman A., 2001, “Drop Ejection from an Oscillating Rod”, Journal of Colloid and Interface Science, Vol. 242, pp. 180-201.
[29] Liou, T. M., Shih, K. C., Chau, S. W. and Chen, S. C., 2002, “Three Dimensional Simulations of the Droplet Formation during the Inkjet Printing Process”, International Communications in Heat and Mass Transfer, Vol. 29, No. 8, pp. 1109-1118.
[30] 吳鉉忠,2004,“壓電式微液滴噴射數學模擬系統之開發與實驗研究”,博士論文,國立成功大學材料科學及工程學系,台南、台灣。
[31] Yu, Jiun Der, Sakai, Shinri, Sethian James, 2005, “A coupled quadrilateral grid level set projection”, Journal of Computational Physics, Vol. 206, pp. 227-251.
[32] Yildirim, zgur E. and Basaran, Osman A., 2006, “Dynamics of formation and dripping of drops of deformation-rate-thinning and thickening liquids from capillary tubes”, J. Non-Newtonian Fluid Mech., Vol.136, pp.17-37.
[33] Chen, Y. S., Huang, Y. L., Kuo, C. H., Chang, S. H. , 2007, “Investigation of design parameters for droplet generators driven by piezoelectric actuators”, International Journal of Mechanical Sciences, Vol. 49, pp. 733-740.
[34] Brackbill, J. U., Kothe, D. B. and Zemach, C., 1992, “A Continuum Method for Modeling Surface Tension”, Journal of Computational Physics, Vol. 100, pp. 335-354.
[35] Van Doormaal, J. P. and Raithby, G. D., 1984, “Enhancements of The SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163.
[36] Pantankar, S. V., 1980, “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing.
[37] Kothe, Douglas B., Mjolsness, Raymond C. and Torrey, Martin D., 1991, “RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces”, LA-12007-MS.
[38] Gueyffier, Denis, Li, Jie, Nadim, Ali, Scardovelli, Ruben, Zaaleski, Stephane, 1998, “Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows”.
[39] Rider, William J. and Kothe, Douglas B., 1998, “Reconstructing Volume Tracking”, Journal of Computational Physics, Vol. 141, pp. 112-152.
[40] Scardovelli, Ruben and Zaleski, Stephane, 2000, “Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids”, Journal of Computational Physics, Vol. 164, pp. 228-237.
[41] Harvie, Dalton J. E., Flectcher, David F., 2000, “A New Volume of Fluid Advection Algorithm: The Stream Scheme”, Journal of Computational Physics, Vol. 162, pp. 1-32.
[42] Renardy, Michael, Renardy, Yuriko, Li, Jie, 2001, “Numerical Simulation of Moving Contact Line Problems Using a Volume-of-Fluid Method”, Journal of Computational Physics, Vol.171, pp. 243-263.
[43] 郭永吉,2003,“壓電式噴墨系統之液滴噴射行為模擬”,碩士論文,國立東華大學材料科學及工程研究所,花蓮、台灣。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔