(3.238.186.43) 您好!臺灣時間:2021/03/01 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃盈嘉
研究生(外文):Ying-Chia Huang
論文名稱:陶瓷軸封材料在水潤滑下之磨潤特性研究
論文名稱(外文):Friction and wear property of ceramic seals against materials in water
指導教授:張國明李旺龍李旺龍引用關係
指導教授(外文):Kuo-Ming ChangWang-Long Li
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:162
中文關鍵詞:球對盤磨耗試驗機水潤滑磨損軸封石墨材料
外文關鍵詞:ball on diskwater lubricationwearsealgraphite
相關次數:
  • 被引用被引用:1
  • 點閱點閱:968
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
每種材料皆有它適合的使用場合與功能,如何從各種材料的摩擦磨損性能中,挑選出軸封對磨面的最佳化配對,為本研究的主要目的。本研究係針對各式陶瓷軸封配合材料,如碳化矽、石墨、碳化鎢、氧化鋁、氧化鋯、氮化矽等工業界常用陶瓷材料,在乾摩擦以及水潤滑條件下,模擬軸封材料的配對情況,來進行研究,並透過軸封測試機及球對盤磨耗試驗機的實驗,量測各材料配對的性質,且利用光學顯微鏡與表面粗度儀,建立出一系列磨損、摩擦資料庫,並針對兩測試機台試驗結果找出關聯性。
本研究實驗分成兩部分進行,第一部分是為模擬碳化矽、石墨、碳化鎢陶瓷材料配對在軸封運轉時的磨耗情形,將碳化鎢、常壓燒結型碳化矽、反應結合型碳化系三種材料,與浸樹脂材石墨料和浸銻石墨材料互相配對,並局部修改祥景公司所自行研發設計的軸封測試機,達到線上量測操作溫度的功能,以進行測試流程,並透過分析實驗所得溫度、表面粗度等結果,以了解各材料在軸封上的磨潤狀況,且對其組織與性能利用光學顯微鏡與表面粗度儀進行分析。經過實驗觀察,發現浸樹脂石墨A與浸銻石墨A材料分別為浸樹脂石墨與浸銻石墨中,升溫表現最優良的材料,其中浸銻石墨A擁有穩定的溫升,實驗最初10分鐘內升溫量為14℃,實驗最後10分鐘升溫量只剩不到1℃,升溫量隨時進行而逐漸降低並達到穩定,因此在第二部份實驗中,將對兩浸漬石墨材料製成石墨盤,與氧化鋁、氧化鋯、氮化矽、不鏽鋼等球型材料進行配對。
實驗第二部分為利用球對盤磨耗試驗機,以數據擷取系統,進行材料磨耗試驗即時量測。探討氧化鋁、氧化鋯、氮化矽、不鏽鋼在不同負載的水潤滑及乾摩擦等運轉條件下,材料的摩擦磨損性能,並根據實驗所得到的數據繪製各材料摩擦係數的動態圖,加以分析,目的在比較各配對材料的優劣性。同時也以光學顯微鏡與表面粗度儀進行材料磨損表面分析研究。實驗結果顯示材料在水潤滑狀態下,其摩擦係數將大幅降低。如氧化鋁,在乾摩擦時的摩擦係數為0.329,比在水潤滑下的摩擦係數0.047還高。而在30N下水潤滑情況下,實驗約15小時後(滑動距離約30000m),其系統摩擦係數能更快速通過磨合期,進而使摩擦係數達到穩定。而透過球對盤磨耗試驗機的實驗結果,我們也發現陶瓷材料/浸漬石墨比金屬材料/浸漬石墨有更出色的磨潤特性。在磨耗量方面,不管是乾摩擦還是水潤滑,浸樹脂石墨盤的磨耗率都比浸銻石墨盤的磨耗率還要高,如浸樹脂石墨盤/氧化鋁球在乾摩擦時的磨耗率(1.2169%)比浸銻石墨盤/氧化鋁球的磨耗率(0.3549%)來個高。
The purpose of the present study is to find out the optimal mating pairs of seal materials from the wear and friction performance of the mating pairs. From the combinations between various ceramic materials (e.g. SiC, graphite, WC, Al2O3、ZrO2 and Si3N4), they are tested on the Model Tester under conditions of dry and water lubrication to discuss the wear and friction performance of the mating pairs. In addition, pin-on-disk (POD) tribological test and the optical microscope and surface roughness apparatus are utilized to generate tribological data, to analysis of the experimental data, respectively. The correlations of POD and Model Tester are discussed.
The first part is to simulate the realistic mating conditions in Model Tester which was designed by SCENIC. SiC, graphite and WC ceramic materials are used to match against impregnation resin graphite and impregnation antimony graphite.The Model Tester is modified to realize on-line monitoring the temperature.From the measured temperature and surface roughness, and investigates the lubricant states for various material on seal using experimental results. Furthermore, the anatomic and function are analyzed using OM and surface roughness apparatus. As the results, both the impregnation resin graphite A and impregnation antimony graphite A are the optimal material for heating behavior, The impregnation antimony graphite A have steady heating behavior. Temperature rises 14℃ that experiment initial 10 minutes. And temperature rises 1℃ that experiment final 10 minutes. the temperature as time reduces and the controllability is stable, hence, the impregnation antimony graphite disk are matched with ball of Al2O3, ZrO2, Si3N4, steel.
Experiment second part for use POD and AD/DA system to record friction coefficient.Discuss different load condition of Si3N4、Al2O3、ZrO2、Stainless steel materials of friction and wear property in the dry and water lubrication. According to the data to drew the friction coefficient and analyse,the purpose is compare that different mating pairs material.The anatomic and function are analyzed using OM and surface roughness apparatus. Experimental result display that friction coefficient will be reduced in water lubricating. Such as the Al2O3, the friction coefficient is 0.329 in dry lubricate higher than 0.047 in water. In load 30N,water lubrication,After experiment about 15 hours (slip distance 30000m),The friction coefficient can faster through the running-in, then to make the friction coefficient reach steadily. And we find the ceramic/graphite than the metal/graphite have more quality wear property. About wear rate, No matter the dry or water lubricated. Impregnation resin graphite of wear rate higher than impregnation antimony graphite. Such as Impregnation resin graphite disk/Al2O3 ball of wear rate(1.2169%) higher than impregnation antimony graphite disk/Al2O3(0.3549%).
摘要---------------------------------------------------------- i
英文摘要------------------------------------------------------- iii
誌謝------------------------------------------------------------ v
目錄------------------------------------------------------------ vi
表目錄---------------------------------------------------------- ix
圖目錄--------------------------------------------------------- xi
符號說明 ------------------------------------------------------- xv
一、緒論-------------------------------------------------------- 1
1.1機械軸封的介紹------------------------------------------------ 1
1.2摩擦磨損及影響------------------------------------------------ 1
1.3軸封與磨潤的發展---------------------------------------------- 2
1.4文獻回顧----------------------------------------------------- 2
1.4.1軸封陶瓷材料------------------------------------------------ 2
1.4.2摩擦磨損的基本理論------------------------------------------- 3
1.4.3水潤滑理論-------------------------------------------------- 6
1.4.4陶瓷磨損機理概述-------------------------------------------- 8
1.4.5文獻總結--------------------------------------------------- 11
1.5研究動機----------------------------------------------------- 12
1.6研究目的----------------------------------------------------- 13
二、實驗材料特性介紹---------------------------------------------- 16
2.1碳化鎢材料特性討論--------------------------------------------- 16
2.2碳化矽材料特性介紹--------------------------------------------- 17
2.3石墨材料特性討論---------------------------------------------- 21
2.3.1石墨的浸漬-------------------------------------------------- 21
2.4氧化鋁材料特性討論--------------------------------------------- 29
2.5氮化矽材料特性討論--------------------------------------------- 29
2.6氧化鋯材料特性討論--------------------------------------------- 30
2.7SUS316不鏽鋼材料特性討論---------------------------------------31
三、實驗設備與流程-------------------------------------------------33
3.1實驗設備----------------------------------------------------- 33
3.1.1軸封試驗機-------------------------------------------------- 33
3.1.2實驗軸封----------------------------------------------------34
3.1.3球對盤磨耗試驗機-------------------------------------------- 35
3.1.4奈米三維量測儀及奈米薄膜材料試驗機----------------------------- 37
3.2實驗流程----------------------------------------------------- 38
3.2.1使用軸封測試機進行實驗--------------------------------------- 38
3.2.2使用磨耗試驗機進行實驗--------------------------------------- 40
3.2.3使用奈米三維量測儀及奈米薄膜材料試驗機進行實驗-------------------42
四、結果與討論--------------------------------------------------- 44
4.1實驗材料分析討論---------------------------------------------- 44
4.1.1陶瓷材料之奈米壓痕分析討論------------------------------------ 44
4.1.2陶瓷材料之元素分析討論--------------------------------------- 46
4.2軸封試驗機試之試驗結果與討論------------------------------------ 70
4.2.1陶瓷配對材料實驗升溫變化討論---------------------------------- 70
4.2.2陶瓷配對材料實驗溫差討論------------------------------------- 74
4.2.3陶瓷配對材料表面粗度與金相圖討論------------------------------ 79
4.3使用球對盤磨耗試驗機之結果討論---------------------------------- 89
4.3.1陶瓷配對材料在正向負載30N水潤滑條件下的磨潤特性討論--------------89
4.3.2陶瓷配對材料在正向負載5N水潤滑條件下的磨潤特性討論---------------92
4.3.3陶瓷配對材料在不同正向負載,水潤滑條件下之磨潤特性討論------------95
4.3.4陶瓷配對材料在正向負載5N乾摩擦條件下的磨潤特性討論---------------97
4.3.5陶瓷配對材料在正向負載5N下,不同潤滑方式之磨潤特性討論-----------100
4.3.6陶瓷配對材料之表面粗度與金相圖討論----------------------------- 102
4.3.7陶瓷配對材料之磨耗量討論------------------------------------- 122
4.3.8陶瓷配對材料表面粗度與磨耗量之討論----------------------------- 128
4.4陶瓷材料之晶粒討論--------------------------------------------- 129
4.4.1陶瓷材料之晶粒大小與晶粒間距討論------------------------------ 129
4.4.2晶粒尺寸對摩擦的影響討論------------------------------------- 131
4.4.3陶瓷材料之晶格常數討論--------------------------------------- 131
五、結論與未來展望------------------------------------------------ 133
5.1結論----------------------------------------------------------133
5.2未來展望----------------------------------------------------- 134
參考文獻 --------------------------------------------------------135
參考文獻
[1]褚世明,2000,“機械軸封在泵浦上的使用與檢驗”,機械月刊,26
卷,6期,頁399-414。
[2]高斌,1994,“滑動乾摩擦過程及其機理分析”,摩擦學報,15卷,
1期,頁13-19。
[3]陳達謙,2000,“工程陶瓷的磨損與氧化鋁陶瓷耐磨性的提高”,陶
瓷, 4期,頁9-11。
[4]張嗣偉,1994,“摩擦學的進展與展望”,摩擦學報,14卷,1期,
頁84~88。
[5]褚世明,2003,“機械軸封的安裝與使用”,機械月刊,29卷,5
期,頁14-25。
[6]褚世明,1999,“機械軸封功能及設計”,機械月刊,25卷,8期,
頁310-336。
[7]褚世明,2000,“機械軸封選用資料”,機械月刊,26卷,2期,頁
290-297。
[8]褚世明,1999,“泵浦機械軸封的材質”,機械月刊,25卷,10期,
頁287-297。
[9]賴子邨,2000,“最近之油壓軸封技術”,機械月刊,20卷,12期,
頁169-176。
[10]曾濤,1999,“機械密封的摩擦副材料”,潤滑與密封,6期,頁
66-67。
[11]D.John , 1963 , “Mechanical face seal wear” , wear , Vol. 6,
pp.201-208.
[12]S. Kalpakjian,1998,機械製造,文京圖書有限公司。
[13]A.Gangopadhyay , S.Jahanmir , B.E.Hegemann , 1990 , “Reduction
in Coefficientof friction insliding ceramics surfaces by in stiu
formation of solid lubrication coating” , Mechanics of Coating ,
pp.63.
[14]A.Gangopadhyay , S.Jahanmir , 1991 , “Friction and wear
characteristics of silicon nitrde– graphit and alumina” ,
Trbol.Trans , Vol. 34 , pp.257-265.
[15]F. Zhoua , K. Adachib , K. Kato , 2006 , “Wear-mechanism map of
amorphous carbon nitride coatings sliding against silicon
carbide balls in water” , Surface & Coatings Technology , Vol.
200 , pp. 4909 – 4917.
[16]F.Zhou , K.Adachi , K. Kato, 2006 , “Sliding friction and wear
property of a-C and a-CNx coatings against SiC balls in water” ,
Thin Solid Films Vol. 514 , pp.231–239.
[17]F.Zhou , K.Adachi , K.Kato , 2005 , “Friction and wear property
of a-CNx coatings sliding against ceramic and steel balls in
water” , Diamond & Related Materials , Vol. 14 , pp. 1711 –
1720.
[18]F.Zhou , K. Kato , K. Adachi , 2005 , “Friction and wear
properties of CNx/SiC in water lubrication” , Tribology
Letters , Vol. 18 , pp.112-117, February.
[19]F.Zhoua , K.Adachib , K. Kato , 2006 , “Comparisons of
tribological property of a-C, a-CNx and BCN coatings sliding
against SiC balls in water”, Surface & Coatings Technology ,
Vol. 200 , pp. 4471 – 4478.
[20]陳雪梅,羅啟富,1996,“Si3N4/3Cr2W8V鋼摩擦副滑動摩擦磨損性能”,潤滑與
密封,卷17,4期,頁61-64。
[21]B.R.Lawn , 1975 , “Model for the wear of brittle solids under
fixed abrasiveconditions” , Wear , Vol.32 , pp.369-372.
[22]K. Kato , K. Adachi , 2002 , “Wear of advanced ceramics” , Wear
Vol.253, pp.1097~1104.
[23]M. Chen , K. Kato , K. Adachi , 2001 , “Friction and Wear of self
~mated SiC and Si3N4 sliding in water” , Wear , Vol. 250 , pp.
246-255.
[24]R.G.Bayer , L.L.Sirico , 1975 , “The influence of surface
roughness on wear” , Wear , Vol. 35, pp.251~260.
[25]譚業發,1997,複合陶瓷摩擦削特性的研究,天津大學,博士論文。
[26]R.W.Rice , R.C.Pohanka , 1979 , “Grain size dependence of
spontaneous cracking in ceramics” , AM.Ceram.Soc , Vol.62 ,
pp.559-563.
[27]K.H.Z.Gahr , W.Bundschuh , B. Zimmerlin , 1993 , “Effect of
grain size on friction and sliding wear of oxide ceramics” ,
Wear , Vol.162-164 , pp. 269-279.
[28]T.C.Chung., W.Cheng , J.wei , 2000 , “Effcts of material
properties and testing parameters on wear properties of fine-
grain zirconia (TZP)” , Wear , Vol.242 , pp. 97-104.
[29]A.G.Evans , D.B.Marshall , 1980, “Wear mechanisms
inceramics,Fundam” , Friction Wear Mater , pp.439-452.
[30]D.H.Buckley , K. Miyoshi , 1984 , “ Friction and wear of
ceramics” , Wear , Vol.100 , pp.333-353.
[31]X.Z.Zhao , J. Liu , B.L. Zhu , H.Miao, Z. Luo ,
1997 , “Tribological characteristics of Si3N4 ceramic sliding on
stainless steel” , Wear Vol.206 , pp.76-82.
[32]S.Gates , S.M.Hsu , E.E.Klaus , 1988 , “Tribochemical mechanism
of alumina with water” , Proc.ASME/ASLE , Vol.357.
[33]Kitaoka ,Y.Yamaguchi , Y.Takhashi , 1992 , “Tribological
characteristics of α-alumina in high-temperature water” ,
J.Am.Ceram.Soc. , Vol.75 , pp.3075-3080.
[34]A. Revikiran, B. N.Bai, 1995, “Observations on the role of the
steel disc counterface during the sliding of various structural
ceramics”, Wear , Vol.181-183 , pp.544-550.
[35]A. Yevtushenko , O.ukhanska and R.chapovska , 1996 , “Friction
heat distribution between a stationary pin and a rotation
disc” , Wear , Vol. 196 , pp. 219-225.
[36]J. Alcock , O.T. Sqrensen , S.Jensen and P. Kjeldsteen ,
1996, “Comparative wear mapping techniquesⅠ.Friction and wear
mapping of tungsten carbide/silicon carbide” , Wear , Vol.194 ,
pp.219-227.
[37]N. E. Bekhet , 1999 , “Tribological behaviour of drawn
polypropylene” , Wear , Vol. 236 , pp.55-61.
[38]S. V. Prasad , N. T. McDevitt and J. S. Zabinski ,
1999 , “Tribology of tungsten disulfide films in humid
environments: The role of a tailored metal-matrix composite
substrate” , Wear , Vol. 230 , pp.24-34.
[39]L.J. Yang , 1999, “Pin-on-disc wear testing of tungsten
carbide .with a new moving pin technique” , Wear , Vol. 225–
229 , pp.557–562.
[40]T. E.Raghy , P. Blau and M.W. Barsoum , 2000, “Effect of grain
size on friction and wear behavior of Ti3 SiC2” , Wear , Vol.
238 , pp.125–130.
[41]W.Yan , N. P. O’Dowd and E. P. Busso , 2002 , “Numerical study
of sliding wear caused by a loaded pin on a rotating disc” ,
Journal of the Mechanics and Physics of Solids , Vol. 50 , pp.
449- 470.
[42]O. Barrau , C. Boher , R. Gras and F. Rezai-Aria ,
2003, “Analysis of the friction and wear behaviour of hot work
tool steel for forging”, Wear , Vol.255 , pp.1444-1454.
[43]姚舜暉,高文顯,蘇演良,劉醇鴻,劉伍健,2004,“氮化鈦/氮化鋁超晶格鍍膜磨
耗行為之研究”,磨潤暨材料科技研討會,頁155-158,雲林,台灣,4月22日。
[44]于劍平,張育斌,蘇佳宏,2004,“不同材料奈米磨潤性質量測之研究”, 中國機
械工程學會第二十一屆全國學術研討會論文集,高雄,台灣,11月26日。
[45]M. Meozzi , 2006 , “Special use of the ball on disc standard
test” , Tribology International , Vol.39 , pp. 496–505.
[46]Hegadekattea , N. Huberb and O. Krafta , 2006 , “Modeling and
simulation of wear in a pin on disc tribometer” , Tribology
Letters , Vol. 24 , No. 1 , pp.51-60.
[47]Y. Zhang , w. L. Zhang , L. Cheng , Y.Xu , 2007 , “High-Load
Friction Behavior of a Hinge Bearing Based on a Carbon/Silicon
Carbide Composite” , J. Am. Ceram. Soc , Vol. 90 , pp. 1139–
1145.
[48]S. Guicciardi , D. Sciti , C. Melandri , G. Pezzotti ,
2007, “Dry sliding wear behavior of nano-sized SiC pins against
SiC and Si3N4 discs” , Wear , Vol. 262 , pp. 529–535.
[49]胡亞非,王雷,胡建文,2006,“中速磨煤機用浸銻石墨密封環材料的製備與性
能”,機械工程材料,30卷,6期,頁55-57。
[50]劉敏,2005,反應燒結SiC陶瓷摩擦磨損性能研究,安西理工大學,學位論文。
[51]餘繼紅,江東亮,1998,“碳化矽陶瓷的發展與應用”,陶瓷工程, 32,
卷,13期。
[52]胡亞非,張燕京,盛玉生,2006,“中速磨煤機用碳精密封環材質對比
與選擇”,中國電力 ,39卷,7期,頁92-94。
[53]馬慶春,2004,“碳石墨材料浸漬改性的探討”,碳素 ,2期,頁16-20。
[54]何敏,王啟立,孫智,2006,“浸銻石墨摩擦磨損特性研究”,潤滑與
密封 ,9期,頁155-156。
[55]池淑芬,劉強,呂洪全,趙吉存,2003,“碳石墨材料浸漬金屬機理的
探討”,碳素,2期,頁24-29。
[56]胡亞非,2006,“石墨浸銻新材料孔隙逾滲結構與材質性能研究”,
潤滑與密封 ,8期,頁81-86。
[57]鄧建新,1996,“一種陶瓷刀具材料的摩擦磨損損性能研究”,摩擦學
學報,18卷,1期。.
[58]曾傑,丁厚福,尤顯卿等,1997,“粗顆粒Al2O3 陶瓷 再無潤滑條件
下磨損特性探討”,理化檢驗—物理分冊,33卷,5期,頁26-29。
[59]趙興中,1998,“乾摩擦及水或油潤滑下TiCN-Al2O3 陶瓷/不銹鋼摩
擦副的磨損性能的研究”,摩擦學學報,18卷,1期。
[60]Adewoye , Page , 1981 , “Frictional deformation and fracture in
polycrystalline SiC and Si3N4” , Wear , Vol.70 , pp.37-40.
[61]D.C.Cranmer , J. Mat. , 1985 , “Friction and wear properties of
monolithic silicon-based ceramics” , Sci , Vol.20 , pp. 2029-
2037.
[62]O.O.Ajayi , K.C. Ludema , 1991, “The effect of microstructure on
wear modes of ceramic materials”, Wear , pp.307–318.
[63]K. Miyoshi , D.H. Buckley , 1982 , “XPS , AES and Friction
Studies of Single-Crystal Silicon Carbide” , Appl. Surf. Sci ,
Vol.10 , pp. 357-376.
[64]X.Dong , S.Jahanmir , L.K.Lves , 1995 , “Wear transition diagram
for silicon carbide” , Triboligy International , Vol.28 , no.8 ,
pp.559-572.
[65]V.A.Altman , G.V.Malaknov , V.L.Memlor. , 1989 , “Study of
mechanism of surfacefilme formation in the friction of
coppergraphite material” , Friction and Wear , Vol.10 , pp.873-
881.
[66]F. Zhoua , K. Adachi , K. Kato, 2006 , “Friction and wear
behavior of BCN coatings sliding againstceramic and steel balls
in various environments” , Wear , Vol.261 , pp.301–310.
[67]H.G.Scott , 1985 , “Friction and wear of zirconia at very low
sliding speeds” , Wear Mater , pp. 8-12.
[68]V.Aronov , 1987, “Friction induced strengthening mechanisms of
magnesia partially stabilized zirconia”, J. Tribol, Vol.109 ,
pp.531-536.
[69]G.W.Stachowiak , G.B.Stachowiak , 1989 , “Unlubricated friction
and wear behaviour of toughened zirconia ceramics” , Wear ,
Vol.132 , pp.151-171.
[70]折曉黎,李波,林義民,1994,“Ce-TZP 陶瓷的摩擦磨損特性”,蘭
州大學學報(自然科學版),30卷,4期,頁36-41。
[71]E.Patricio , R-Morel , I.Chen , 1988 , “Transformation
plasticity of Ce-stabilized tetragonal polycrystals” , J Am
Ceram Soc , Vol.71 , no.5, pp.343-353.
[72]V.Tikare , A.H.Heuer , 1991,“Temperature dependent indentation
behavior of transformation–toughened zirconia–based
ceramics” , J Am Ceram Soc , Vol.74,no. 3 , pp.595-597.
[73]G.N.Morscher ,P.Pirouz , A.H.Heuer , 1991 , “Temperature
dependence of hardness in yttria-stabilized zirconia single
crystal” , J. Am. Ceram. Soc, Vol.74 , no.3 , pp.491-500.
[74]M.Terheci , J. Nanos , H. Giannakoudaris , Sylvester
Abanteriba , 1996 , “Tribological behaviour of yttria-stabilised
zirconia under dry sliding condition when tested against itself
and grey automotive castiron” , Wear , Vol.201 , pp.26-37.
[75]T.C.Chung , J.W.Yang , W.Cheng , 2000 ,“Effects of material
properties andtesting parameters on wear properties of fine-
grine zirconia(TZP) ”,Wear , Vol.242 , pp.97-104.
[76]劉惠文,薛群基,林立,1996,“氧化鋯陶瓷的摩擦磨損行為與機理”,摩擦學報,
16卷, 16-13期。
[77]A.Tucci , L.Esposito , 1994 , “Microstructure and tribological
properties of ZrO2 ceramics” , Wear , Vol.172 , pp.111-119.
[78]T.Stoto , M.Nauer , C.Carry , 1991 , “Influence of residual
impurities on phase partitioning and grain growth processes of Y–
TZP materials”, J.Am.ceam. Soc , Vol.74 , no.10 , pp2615-2621.
[79]Y.Sun , B.Li , D.Q.Yang , T.Wang , Y.Sasaki , K.Ishii ,
1998 , “Unlubricated friction and waer behavour of zirconia
ceramics” , Wear , Vol.215 , pp. 232-236.
[80]H.Tomizawa , T.Fischer , 1986, “Friction and wear of silicon
nitride at 150°C to 800°C” , ASLE Trans , Vol.29 , pp.481-488.
[81]X.Dong , S.Jahanmir , 1993 , “Wear transition diagram for
silicon nitride” , Wear , Vol.165 , pp.69-80.
[82]J.Viztin , M.Kalin , S.Novak , G.DrazicL.K..Ives ,
M.B.Peterson , 1996 , “ffect of slip amplitude on the fretting
wear of silicon nitride against silicon nitride” , Wear ,
Vol.192 , pp.11-20.
[83]X. Zhao , J. Liu , B. Zhu , H.Miao , Z. Luo ,
1997 ,“Tribological characteristics of Si3N4 ceramic sliding on
stainless steel” , Wear , Vol.206 , pp. 76-82.
[84]M.Kalin , J.Vižtin , S.Novak , 1996, “Effect of fretting
conditions on the wear of siliconnitride against bearing
steel” , Materials Science and Engineering ,Vol.220 , pp.191-199.
[85]X.Dong , S.Jahanmir , 1993 , “Wear transition diagram for
silicon nitride” , Wear , Vol.165 , pp.169-180.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔