跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈瑞文
研究生(外文):Rui-Wen Shen
論文名稱:極低間隙潤滑條件下之含人字形溝槽微型空氣軸承運轉特性與穩定性分析
論文名稱(外文):The analysis of dynamic characteristics and stability performance of micro gas bearings with herringbone-grooved under ultra-thin film lubrication
指導教授:張國明、李旺龍
指導教授(外文):Kuo-Ming Chang, Wang-Long Li
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:131
中文關鍵詞:人字形溝槽微型空氣軸承MMGL方程式稀薄氣體效應表面調節係數穩定性
外文關鍵詞:Herringbone grooveMicro gas bearingMMGL equationEffects of gas rarefactionAccommodation coefficientStability
相關次數:
  • 被引用被引用:2
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要探討含人字形溝槽微型空氣軸承於極低間隙潤滑條件下的穩態、動態性能與穩定特性。對極低間隙下的氣態潤滑行為而言,稀薄氣體效應與表面調節係數的影響不容忽視,傳統潤滑方程式已然無法適用。透過壓力流率與剪切流率修正因子(Qp、Qc),傳統的潤滑方程式將可進一步修正為含稀薄氣體效應潤滑方程式(The modified molecular gas lubriccation equation,MMGL equation),解決極低間隙下的氣態潤滑問題。本研究內容共包含三個部份。

第一部分透過微擾線性化方法,將可推導MMGL方程式之零階與一階方程式,求解含人字形溝槽微型空氣軸承於極低間隙潤滑條件下之穩態、動態性能,探討不同人字形溝槽幾何設計、軸承運轉參數與稀薄氣體效應對軸承運轉特性帶來的影響。

第二部份經由軸承穩定性理論與軸承動態係數,將能求解臨界穩定情形下之臨界轉速與關鍵質量,進而定義軸承穩定性邊界,並針對不同的人字形溝槽幾何設計、軸承運轉參數與稀薄氣體效應進行分析,討論其對含人字形溝槽微型空氣軸承穩定性之影響。



第三部份則說明如何藉由軟體物件化概念,輔以區間分散法、循環誤差逼近法,與黃金分割法,完成軸承穩定性分析流程,增進軸承穩定性分析工作之運算效率。
In this thesis, the load capacity, dynamic characteristics (stiffness coefficients and damping coefficients), and the stability performance of a micro-gas bearings with herringbone-grooved under ultra-thin film lubrication are analyzed. In the analysis of ultra-thin gas film lubrication problems, effects of gas rarefaction and accommodation coefficients can not be ignored. Traditional lubricated equation could be revised by incorporating the Couette flow rate (Qc) and the Poiseuille flow rate (Qp), to change to the modified molecular gas lubrication (MMGL) equation. Therefore it could be used to solve the problems of narrow clearance and ultra-thin gas film. This thesis includes three parts.
In the first part, we could obtain the zeroth order and the first order MMGL equation through the linear MMGL equation that is linearized by perturbation method. Therefore, the static performance and dynamic characteristics on the micro-gas lubricated bearing with herringbone grooves under different geometry and gas rarefaction conditions can be analyzed and discussed.
In the second part, by the theory of stability, the instability threshold speed and the critical mass of the journal bearings can be calculated through dynamic coefficients to define the stability characteristics. Therefore, the stability performance on the micro-gas lubricated bearing with herringbone grooves under different geometry and gas rarefaction conditions can be analyzed and discussed.
Finally, the stability analysis procedure by the object oriented conceptions is proposed. In the analysis procedure, algorithms include the range-average, the cycle-error-approach and the golden section are applied. And the computational efficiency can be improved.
中文摘要 --------------------------------------------------------------------- i
英文摘要 --------------------------------------------------------------------- iii
誌謝 --------------------------------------------------------------------- v
目錄 --------------------------------------------------------------------- vi
表目錄 --------------------------------------------------------------------- ix
圖目錄 --------------------------------------------------------------------- x
符號說明 --------------------------------------------------------------------- xii
第一章 緒論--------------------------------------------------------------- 1
1.1 軸承種類--------------------------------------------------------- 1
1.2 高轉速∕微型化趨勢------------------------------------------ 2
1.3 軸承設計∕性能優化------------------------------------------ 6
1.3.1 靜壓軸承--------------------------------------------------------- 6
1.3.2 動壓軸承--------------------------------------------------------- 7
1.3.3 混壓軸承--------------------------------------------------------- 10
1.4 軸承性能∕穩定性分析--------------------------------------- 10
1.4.1 液態潤滑特性--------------------------------------------------- 10
1.4.2 氣態潤滑特性--------------------------------------------------- 11
1.5 基礎科學∕數值方法------------------------------------------ 12
1.5.1 液態軸承的限制------------------------------------------------ 13
1.5.2 氣態軸承的挑戰------------------------------------------------ 13
1.5.3 軸承性能數值分析--------------------------------------------- 14
1.6 研究動機------------------------------------------------------ 16
1.7 研究目的--------------------------------------------------------- 16
1.8 本文架構--------------------------------------------------------- 17
第二章 統御方程式------------------------------------------------------ 19
2.1 可壓縮雷諾方程式--------------------------------------------- 19
2.1.1 基本假設--------------------------------------------------------- 19
2.1.2 微分連續性方程式--------------------------------------------- 20
2.1.3 流體動量方程式------------------------------------------------ 21
2.1.4 那維爾─史托克方程式--------------------------------------- 21
2.2 稀薄氣體效應--------------------------------------------------- 22
2.2.1 滑移邊界條件--------------------------------------------------- 24
2.2.2 表面調節係數--------------------------------------------------- 29
2.3 修正型氣體分子潤滑方程式--------------------------------- 30
第三章 軸承運轉特性--------------------------------------------------- 32
3.1 軸承潤滑模式--------------------------------------------------- 32
3.1.1 基本膜厚方程式------------------------------------------------ 32
3.1.2 含人字形溝槽膜厚方程式------------------------------------ 33
3.2 微擾法------------------------------------------------------------ 35
3.2.1 統御方程式線性化--------------------------------------------- 36
3.2.2 穩態與動態方程式--------------------------------------------- 37
3.2.3 時頻轉換--------------------------------------------------------- 38
3.3 軸承氣膜模式化------------------------------------------------ 43
3.4 軸承穩定性理論------------------------------------------------ 45
3.4.1 臨界穩定門檻--------------------------------------------------- 45
3.4.2 穩定性邊界法則------------------------------------------------ 47
第四章 軸承穩定性分析流程------------------------------------------ 49
4.1 物件導向程式設計概念--------------------------------------- 49
4.2 有限元素方法物件化------------------------------------------ 50
4.2.1 軸承幾何與參數定義------------------------------------------ 51
4.3 最佳演算法則--------------------------------------------------- 52
4.3.1 區間分散求解法------------------------------------------------ 53
4.3.2 循環誤差逼近法------------------------------------------------ 53
4.3.3 黃金分割法------------------------------------------------------ 54
4.4 穩定性分析流程------------------------------------------------ 55
第五章 含人字形溝槽微型空氣軸承穩態與動態性能分析------ 57
5.1 統御方程式驗證------------------------------------------------ 59
5.2 人字形溝槽幾何特性分析------------------------------------ 59
5.2.1 人字形溝槽深度------------------------------------------------ 63
5.2.2 人字形溝槽寬度比--------------------------------------------- 63
5.3 軸承偏心效應--------------------------------------------------- 63
5.4 稀薄氣體效應--------------------------------------------------- 72
5.4.1 表面調節係數與軸承數--------------------------------------- 72
5.4.2 低軸承數之表面調節係數影響------------------------------ 76
5.4.3 高軸承數之表面調節係數影響------------------------------ 79
第六章 含人字形溝槽微型空氣軸承穩定性分析------------------ 83
6.1 穩定性理論驗證------------------------------------------------ 83
6.2 人字形溝槽幾何特性分析------------------------------------ 86
6.2.1 溝槽化設計與軸承穩定性------------------------------------ 86
6.2.2 溝槽深度與軸承穩定性--------------------------------------- 93
6.2.3 軸承表面溝槽數之影響--------------------------------------- 95
6.3 稀薄氣體效應--------------------------------------------------- 95
6.3.1 軸承間隙與反克努森數--------------------------------------- 96
6.3.2 表面調節係數--------------------------------------------------- 98
第七章 結論--------------------------------------------------------------- 103
參考文獻 --------------------------------------------------------------------- 106
作者簡介 --------------------------------------------------------------------- 111
1.T. Asada, H. Saito, Y. Asaida and K. Itoh, 2002, “Design of hydrodynamic bearings for high-speed HDD”, Microsyst. Technol., Vol. 8, pp. 220-226.
2.T. Hirayama, T. Sakurai and H. Yabe, 2004, “A theoretical analysis considering cavitation occurrence in oil-lubricated spiral-grooved journal bearings with experimental verification”, J. Tribol., Vol. 126, pp. 490-498.
3.G. H. Jang and Y. J. Kim, 1999, “Calculation of dynamic coefficients in a hydrodynamic bearing considering five degrees of freedom for a general rotor-bearing system”, J. Tribol-T. ASME, Vol. 121, pp. 499-505.
4. G. H. Jang and J. W. Yoon, 2002, “Dynamic characteristics of a coupled journal and thrust hydrodynamic bearing in a HDD spindle system due to its groove location”, Microsyst. Technol., Vol. 8, pp. 261-270.
5.G. H. Jang and J. W. Yoon, 2002, “Nonlinear dynamic analysis of a hydrodynamic journal bearing considering the effect of a rotating or stationary herringbone groove”, J. Tribol., Vol. 124, pp. 297-304.
6.G. H. Jang, S. H. Lee, H.W. Kim and C. S. Kim, 2005, “Dynamic analysis of a HDD spindle system with FDBs due to the bearing width and asymmetric grooves of journal bearing”, Microsyst. Technol., Vol. 11, pp. 499-505.
7.G. Jang and S. Lee, 2006, “Determination of the dynamic coefficients of the coupled journal and thrust bearings by the perturbation method”, Tribol. Lett., Vol. 22, pp. 239-246.
8.C. C. Rondonuwu and S. H. Winoto, 2006, “Pressure distributions along vertical hydrodynamic herringbone-grooved journal bearings”, Tribol T., Vol. 49, pp. 174-181.
9.G. H. Jang and D. I. Chang, 2000, “Analysis of a hydrodynamic herringbone grooved journal bearing considering cavitation”, J. Tribol-T. ASME, Vol. 122, pp. 103-109.
10.T. V. V. L. N. Rao and J. T. Sawicki, 2004, “Stability characteristics of herringbone grooved journal bearings incorporating cavitation effects”, J. Tribol., Vol. 126, pp. 281-287.
11.T. Hirayama, T. Sakurai and H. Yabe, 2005, “Analysis of dynamic characteristics of spiral-grooved journal bearing with considering cavitation occurrence“, JSME Int. J. C-Mech Sy., Vol. 48, pp. 261-268.
12.K. Kang, Y. Rhim, T. Son, K. Sung and H. Choi, 1995, “Numerical analysis of the oil-lubricated herringbone-grooved journal bearing for VCR drum assembly ”, ICCE, Rosemont, IL, USA, June 7-9, pp. 26-27.
13.T. Zheng and N. Hasebe, 2000, “Calculation of equilibrium position and dynamic coefficients of a journal bearing using free boundary theory”, J. Tribol-T. ASME, Vol 122, pp. 616-621.
14.T. V. V. L. N. Rao and J. T. Sawicki, 2005, “Stability analysis of a rough journal bearing considering cavitation effects”, J. Tribol, Vol. 127, pp. 112-119.
15.T. S. Lee, Y. G. Liu and S. H. Winoto, 2004, “Analysis of liquid-lubricated herringbone grooved journal bearings”, Int. J. Numer. Method. H., Vol. 14, pp. 341-365.
16.T. Kobayashi and H. Yabe, 2005, “Numerical analysis of a coupled porous journal and thrust bearing system”, J. Tribol., Vol. 127, pp. 120-129.
17.J. W. Lund, 1987, “Review of concept of dynamic coefficients for fluid journal bearings”, J. Tribol., Vol. 109, pp. 37-41.
18.O. Ebrat, Z. P. Mourelatos, N. Vlahopoulos and K. Vaidyanathan, 2004, “Calculation of journal bearing dynamic characteristics including journal misalignment and bearing structural deformation”, Tribol T., Vol. 47, pp. 94-102.
19.P. Vleugels, T. Waumans, J. Peirs, F. Al-Bender and D. Reynaerts, 2006, “High-speed bearings for micro gas turbines: Stability analysis of foil bearings”, J. Micromech. Microeng., Vol. 16, pp. S282-S289.
20.Z. S. Spakovszky and L. X. Liu, 2005, “Scaling laws for ultra-short hydrostatic gas journal bearings “, J. Vib. Acoust., Vol. 127, pp. 254-261.
21.L. X. Liu, C. J. Teo, A. H. Epstein and Z. S. Spakovszky, 2005, “Hydrostatic gas journal bearings for micro-turbomachinery”, J. Vib. Acoust., Vol. 127, pp. 157-164.
22.K. Breuer, F. Ehrich, L. Frechette, S. Jacobson, C. C. Lin, D. Orr, E. Piekos, N. Savoulides and C. W. Wong, 2000, “Challenges for lubrication in high-speed MEMS”, NanoTribology, S. Hsu, ed. Kluwer Academic Publisher, Dordrecht.
23.L. G. Frechette, S. A. Jacobson, K. S. Breuer, F. F. Ehrich, E. Ghodssi, R. Khanna, C. W. Wong, X. Zhang, M. A. Schmidt and A. H. Epstein, 2000, “Demonstration of a microfabricated high-speed turbine supported on gas bearings”, Proc. Solid-State Seneor and Actuator Workshop, Hilton Head Is., SC.
24.L. X. Liu and Z. S. Spakovszky, 2007, “Effects of bearing stiffness anisotropy on hydrostatic micro gas journal bearing dynamic behavior”, J. Eng. Gas Turb. Power, Vol. 129, pp. 177-184.
25.D. Kim, S. Lee, M. D Bryant and F. F. Ling, 2004, “Hydrodynamic performance of gas microbearings”, J. Tribol., Vol. 126, pp. 711-718.
26.J. P. Peng and M. Carpino, 1993, “Calculation of stiffness and damping coefficients for elastically supported gas foil bearings”, J. Tribol., Vol. 115, pp. 20-27.
27.J. W. Lund, 1968, “Calculation of stiffness and damping properties of gas bearings”, J. Lubr. Technol., Vol. 90, pp. 793-803.
28.L. S. Andres and O. D. Santiago, 2005, “Identification of journal bearing force coefficients under high dynamic loading centered static operation”, Tribol. T., Vol. 48, pp. 9-17.
29.C. C. Wang, C. Y. Lo and C. K. Chen, 2002, “Nonlinear dynamic analysis of a flexible rotor supported by externally pressurized porous gas journal bearings”, J. Tribol., Vol. 124, pp. 553-561.
30.V. Zang and M. R. Hatch, 1996, “On the whirl dynamics of hydrodynamic bearing spindle in information storage systems”, ASME, ISPS, Vol. 2, pp. 73-84.
31.D. J. Foster, 2005, “Geometry and speed effects on the performance of the herringbone grooved gas lubricated journal bearing”, Proc. WTC III, Washington, D.C., United States, Sep. 12-16, pp. 107-108.
32.D. Bonneau and J. Absi, 1994, “Analysis of aerodynamic journal bearings with small number of herringbone grooves by finite element method”, J. Tribol-T ASME, Vol. 116, pp. 698-704.
33.T. Hwang and K. Ono, 2003, “Analysis and design of hydrodynamic journal air bearings for high performance HDD spindle”, Microsyst. Technol., Vol. 9, pp. 386-394.
34.W. R. Smith, 1997, “Computational results of a dynamic simulation of the conforming shell gas journal bearing”, Tribol. Int., Vol. 30, pp. 151-162.
35.J. K. Park and K. W. Kim, 2004, “Stability analyses and experiments of spindle system using new type of slot-restricted gas journal bearings”, Tribol. Int., Vol. 37, pp. 451-462.
36.Y. B. Lee, D. J. Park, C. H. Kim and K. Ryu, 2007, “Rotordynamic characteristics of a micro turbo generator supported by air foil bearings”, J. Micromech. Microeng., Vol. 17, pp. 297-303.
37.I. F. Santos and F. Y. Watanabe, 2006, “Lateral dynamics and stability analysis of a gas compressor supported by hybrid and active lubricated multirecess journal bearing”, J. Braz. Soc. Mech. Sci. & Eng., Vol. 28, no. 4, pp. 485-495.
38.V. Viktorov, G. Belforte and T. Raparelli, 2005, “Modeling and identification of gas journal bearings: Externally pressurized gas bearing results”, J. Tribol., Vol. 127, pp. 548-556.
39.J. W. Lund, 1967, “A theoretical analysis of whirl instability and pneumatic hammer for a rigid rotor in pressurized gas journal bearings”, J. Lubr. Technol., Vol. 89, pp. 154-166.
40.B. W. Huang and H. K. Kung, 2003, “Variations of instability in a rotating spindle system with various bearings”, Int. J. Mech. Sci., Vol. 45, pp. 57-72.
41.M. T. C. Faria, 2001, “Some performance characteristics of high speed gas lubricated herringbone groove journal bearings”, JSME Int. J. C-Mech Sy., Vol. 44, pp. 775-781.
42.Y. B. Lee, H. D. Kwak, C. H. Kim and N. S. Lee, 2005, “Numerical prediction of slip flow effect on gas-lubricated journal bearings for MEMS/MST-based micro-rotating machinery”, Tribol. Int., Vol. 38, pp. 89-96.
43.H. Huang, G. Meng and S. Zhao, 2006, “Steady performance of a micro gas-lubricated bearing”, STLE/ASME, IJTC, San Antonio, Texas, U.S.A., Oct. pp. 7-14.
44.M. Lahmar, A. Haddad and D. Nicolas, 2000, “An optimized short bearing theory for nonlinear dynamic analysis of turbulent journal bearings”, Eur. J. Mech. A-Solid., Vol. 19, pp. 151-177.
45.H. Huang, G. Meng and J. Chen, 2007, “Investigations of slip effect on the performance of micro gas bearings and stability of micro rotor-bearing systems”, Sensors, Vol. 7, pp 1399-1414.
46.W. L. Li, 2002, “A database for Couette flow rate considering the effects of non-symmetric molecular interactions”, J. Tribol., Vol. 124, pp. 869-873.
47.W. L. Li, 2003, “A database for interpolation of Poiseuille flow rate for arbitrary Knudsen number lubrication problems”, J. Chin. Inst. Eng., Vol. 26, pp. 455-466.
48.C. C. Wang and C. K Chen, 2001, “Bifurcation analysis of self-acting gas journal bearings”, J. Tribol., Vol. 123, pp. 755-767.
49.C. C. Wang, 2006, “Analysis of an aerodynamic grooved journal bearing with plain sleeve”, Proceedings of the Inst. Mech. Eng. Part C, J. Mech. Engi. Sci., Vol. 220, pp. 51-60.
50.C. C. Wang, H. T. Yau, M. J. Jang and Y. L. Yeh, 2007, “Theoretical analysis of the non-linear behavior of a flexible rotor supported by herringbone grooved gas journal bearings”, Tribol. Int., Vol. 40, pp. 533-541.
51.T. Kobayashi, 1999, “Numerical analysis of herringbone-grooved gas-lubricated journal bearings using a multigrid technique”, J. Tribol-T ASME, Vol. 121, pp. 148-156.
52.C. Y. Lo, C. C. Wang and Y. H. Lee, 2005, “Performance analysis of high-speed spindle aerostatic bearings”, Tribol. Int., Vol. 38, pp. 5-14.
53.K. Czolczynski, 1996, “How to obtain stiffness and damping coefficients of gas bearings”, Wear, Vol. 201, pp. 265-275.
54.李旺龍,1995,極薄潤滑膜條件下之磁頭-磁片介面分析,國立成功大學機械工程研究所,博士論文。
55.蔡宗易,2007,含人字形溝槽之微型空氣軸承分析,國立高雄應用科技大學機械與精密工程研究所,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top