(3.236.175.108) 您好!臺灣時間:2021/02/28 03:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳清桂
研究生(外文):Qing-Gui Chen
論文名稱:微極流體在移動壁面封閉容器內之混合對流研究
論文名稱(外文):Mixed convection of micropolar fluids in a lid-driven enclosure
指導教授:許燦輝
指導教授(外文):Tsan-Hui Hsu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:87
中文關鍵詞:微極流體三次樣線定置法混合對流
外文關鍵詞:Micropolar fluidsSpline Alternating-Direction Implicit MethodMixed convection
相關次數:
  • 被引用被引用:2
  • 點閱點閱:144
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以數值計算方法來模擬求解微極流體在移動壁面封閉容器之混合對流熱傳問題。在二維的方形容器內,上下壁面以恆定的速度由左至右或由右至左水平移動,上壁面為熱壁面,下壁面為冷壁面,左右壁面均為絕熱壁面。統御方程式之推導由完整的穩態二維不可壓縮流體之Navier-Stokes方程式加入微極流體之方程式推導得之。微極流體方程式之推導首先由A.C. Eringen提出,配合微極流體定律之提出將牛頓流體擴展至非牛頓流體的應用。數值計算上是以三次樣線交換方向定置法(SADI;Spline Alternating-Direction Implicit Method)在個人電腦上求解。無因次化轉換後的統御方程式以流線、旋渦函數、角動量及溫度函數等表示,並得到穩態的熱傳效應。而影響熱場的數值參數主要有Gr、Re、Ri和微極流體特有的參數R。數值模擬顯示出,微極流體比一般牛頓流體的熱傳效果較佳,本文將移動壁面之封閉容器所模擬結果的流場以及溫度場繪製並討論之。
Mixed convection of micropolar fluids in a lid-driven enclosure is numerically investigated in this study. The top and bottom horizontal moving walls are maintained at different constant temperature while left and right walls are adiabatic.The top wall is maintained at a higher temperature than the bottom wall. The governing equations for micropolar fluid were first presented by A.C. Eringen, wherein we furthermore expand the applications to non-Newtonian fluids. The numerical computations were obtained using the cubic spline collocation method in a personal computer. The governing equations, including stream function, vorticity, microrotation and energy, were first put in dimensionless form. The governing parameters appearing in present study are Gr, Re, Ri and several micropolar parameters. The numerical results of the flow fields are discussed with plot and tables of isotherms, streamlines and velocity vectors. The results indicate that the micropolar fluids has more significant convection heat transfer effect than that of Newtonian fluid.
中文摘要……………………………………………………………………… i
英文摘要……………………………………………………………………… ii
致謝…………………………………………………………………………… iii
目錄…………………………………………………………………………… iv
表目錄………………………………………………………………………… vi
圖目錄………………………………………………………………………… vii
符號說明……………………………………………………………………… xi
第一章 緒論………………………………………………………………… 1
1-1 研究目的與動機及其背景…………………………………… 1
1-2 相關文獻回顧………………………………………………… 2
1-3 研究方法……………………………………………………… 6
1-4 本文架構……………………………………………………… 6
第二章 理論分析與數值方法……………………………………………… 7
2-1 物理模型……………………………………………………… 7
2-2 基本假設……………………………………………………… 8
2-3 統御方程式…………………………………………………… 9
2-4 系統邊界狀況………………………………………………… 10
2-5 無因次化分析………………………………………………… 11
2-6 邊界條件……………………………………………………… 12
第三章 數值方法…………………………………………………………… 14
3-1 數值解析……………………………………………………… 13
3-2 數值方法……………………………………………………… 16
3-2.1 線函數表示式及其性質………………………………… 17
3-2.2 利用三次樣線函數求解………………………………… 21
3-2.3 邊界條件之處理………………………………………… 25
3-3 解題方法與程序……………………………………………… 26
第四章 結果與討論………………………………………………………… 28
4-1 數值方法正確性之測試……………………………………… 28
4-2 微極流體R參數的影響……………………………………… 29
4-3 微極流體λ參數的影響……………………………………… 30
4-4 浮力參數Ri的影響…………………………………………… 32
4-5 移動壁面方向變化的影響…………………………………… 33
第五章 結論與建議………………………………………………………… 81
5-1 結論…………………………………………………………… 81
5-2 對未來研究之建議…………………………………………… 83
參考文獻……………………………………………………………………… 84
1.J.H. Lee, R.J Goldstein, 1988, “An experimental study on natural convection heat transfer in an inclined square enclosure containing internal energy sources”, ASME J. Heat Transfer, Vol. 110, pp. 345-349.
2.J.L. Lage, A. Bejan, 1993, “The resonance of natural convection in an enclosure heated periodically from the side”, International Journal Heat and Mass Transfer, Vol. 36, pp. 2027-2038.
3.Y. L. Chan and C. L. Tien, 1985, “A Numerical Study of Two-Dimensional Laminar Natural Convection in Shallow Open Cavities”, Int. J. Heat Mass Transfer, vol. 28, pp. 603-612.
4.Y. L. Chan and C. L. Tien, 1985, “A Numerical Study of Two-Dimensional Natural Convection in Square Open Cavities”, Numer. Heat Transfer, vol. 8, pp65-80.
5.F. Penot, 1982, “Numerical Calculation of Two-Dimensional Natural Convection in Isothermal Open Cavities” Numer. Heat Transfer, vol. 5, pp. 421-437.
6.A.Cihat Baytas ,Ioan Pop, 2002,“Free convection in a square porous cavity using a thermal nonequilibrium model.”,Int. J. Thermal Sciences, vol.41, pp.861-870.
7.P.Le Quere, J. A. C. Humphrey, and F. S. Sherman, 1981,“Numerical Calculation of Thermally Driven Two-Dimensional Unsteady Laminar Flow in Cavities of Rectangular Cross Section.”, Numer. Heat Transfer, vol.4, pp.249-293.
8.C.Y. Choi, A. Ortega, 1993, “Mixed convection in an inclined channel with a discrete heat source.”, Int. J. Heat Mass Transfer, vol.36, pp.3119-3134.
9.C. Yucel, H. Hasnaoui, L. Robillard, E. Bilgen, 1993,“Mixed convection heat transfer in open ended inclined channels with discrete isothermal heating.”, Numer. Heat Transfer Part A 24, pp.109-126.
10.K.J. Kennedy and A. Zebib, 1983,“Combined free and forced convection between horizontal parallel planes: Some case studies.”, Int. J. Heat and Mass Transfer, vol.26, pp.471-474.
11.Mucoglu, A., and Chen, T. S., 1979, “Mixed convection on inclined surfaces,” ASME Journal of Heat Transfer, Vol. 101, pp. 422-426.
12.Hady, F. M., 1995, “Mixed convection boundary-layer flow of non-Newtonian fluids on a horizontal plate,” App. Math. and Computation, Vol. 6, pp. 105-112.
13.Khanafer, K., Vafai, K., 2001, “Isothermal surface production and regulation for high heat flux applications utilizing porous inserts”, Int. J. of Heat and Mass Transfer vol. 44, Issue: 15, August, pp. 2933-2947.
14.R. Iwatsu , J.M. Hyun,K. Kuwahara, 1993, "Mixed convection in a driven cavity with a stable vertical temperature gradient", Int. J. Heat Mass Transfer, Vol.36, pp.1601-1608.
15.R. Iwatsu, J.M. Hyun, 1995, "Three-dimensional driven-cavity flows with a vertical temperature gradient", Int. J. Heat Mass Transfer, Vol.38, pp.3319–3328.
16.Hakan F. Oztop, Ihsan Dagtekin, 2004, "Mixed convection in two-sided lid-driven differentially heated square cavity", Int. J. Heat Mass Transfer, Vol.47, pp.1761–1769.
17.Raj Kamal Tiwari, Manab Kumar Das, 2007, "Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids", Int. J. Heat Mass Transfer, Vol.50, pp.2002–2018.
18.A. C. Eringen, 1964, “Simple Microfluids”, Int. J. Engng. Sci., Vol.2, pp.205-217.
19.A. C. Eringen, 1965, “Mechanical of Micromorphic Materials”, Proc. of The Elevent Int. cong. Appl. Mech. Munich Germany, pp.131, Springer.
20.A.C. Eringen, 1966, “Theory of micropolar fluids”, J. Math. Mech, Vol.16, pp.1-18.
21.A.C. Eringen, 1972, “Theory of thermomicrofluids”, J. Math. Analysis Applic, Vol.38, pp.480-496.
22.M.E. Erdogan, 1970, “Polar Effects in the Apparent Viscosity of a Suspension”, Rheol. ACTA, Vol.9, pp.434-438.
23.J. Peddieson and R.P. McNitt, 1970, “Boundary Layer Theory for a Micropolar Fluid”, Recent Adv. Engng. Sci., vol.5, pp.405-426.
24.T. Ariman, M. A Turk, N. D. Sylvester, 1973, “Microcontinuum fluid Mechanics---A Review”, Int, J. Engng. Sci., Vol. 11, pp.905-930.
25.T. Ariman, M. A Turk, N. D. Sylvester, 1974, “Applications of Microcontinuum fluid Mechanics”, Int, J. Engng. Sci., Vol. 12, pp.273-293.
26.V. L. Kolpashchikov, N. P. Migun and P. P., 1983 Prokhorenko, “Experimental determination of material micropolar fluid constants”, International Journal of Engineering Science, Vol. 21, No. 4, pp. 405-411.
27.T.H. Hsu, C.K. Chen, 1996, “Natural convection of micropolar fluids in rectangular enclosure”, Int. J. Engng. Sci, Vol.34, No.4, pp.407-415.
28.Pao-Tung Hsu, Tsan-Hui Hsu, 1994, “Mixed convection of micropolar fluids in a rectangular cavity”, 第九屆全國技術及職業教育研討會,pp.243-252.
29.Pao-Tung Hsu, Tsan-Hui Hsu, 1995, “Numerical study of natural convection of micropolar fluid in an enclosure”, The third national conference on computational fluid dynamics, pp.83-91.
30.Tsan-Hui Hsu and Pao-Tung Hsu, 1995, “Thermal convection of micropolar fluids in a lid-driven cavity”, International communications in heat and mass transfer, Vol.22, No.2, pp.189-200.
31.Tsan-Hui Hsu, Chao-Kuang Chen, 1996, “Natural convection of micropolar fluids in a rectangular enclosure”, Int. J. Engng Sci., Vol.34, No.4, pp.407-415.
32.Tsan-Hui Hsu, Sheng-Gwo Wang, 2000, “Mixed convection of micropolar fluids in a cavity”, International Journal of Heat and Mass Transfer, Vol.43, pp.1562-1572.
33.Ming-I Char and Cheng-Long Chang, 1997, “Effect of wall conduction on natural convection flow of micropolar fluids along a flat plate”, Int. J. Heat Mass Transfer, Vol.40, No.15, pp.3641-3652.
34.Abderrahim Mrabti, Kamal Gueraoui, Abdelaziz Hihi, Omar Terhmina, 2000, “Effects of microstructure on natural convection flow of micropolar fluids in vertical cylinder heated from below”, International Journal of Engineering Science, Vol.38, pp.823-831.
35.Ali J. Chamkha, T. Grosan and I. Pop, 2002, “Fully developed free convection of a micropolar fluid in a vertical channel”, Int. Comm. Heat Mass Transfer, Vol.29, No.8, pp. 1119-1127.
36.劉耿豪,2002,磁場影響下微極流體通過波形渠道之暫態對流熱傳研究,國立成功大學,碩士論文。
37.王怡然,2003,受磁場與化學反應下微極流體在垂直波形板表面之暫態混合對流熱傳研究,國立成功大學,碩士論文。
38.洪國益,2004,微極流體在開放內穴之自然對流熱傳研究,國立高雄應用科技大學,碩士論文。
39.C. K. Chen, 1986, “Application of cubic spline collocation method to solve transient heat transfer problem”, Heat Transfer in Thermal Systems Seminar-phase, N.C.K.U., Tainan, Taiwan, pp. 167-182.
40.M. Napolitano, 1984, “Efficient ADI and spline ADI Methods for the steady-state Navior-Stokes equations”, International Journal for Numerical Methods in Fluids, Vol. 4, pp. 1101-1115.
41.P. Wang and R. Kahawita, 1983, “Numerical integration of partial differential equations using cubic splines” International Journal of Computer Mathematics, Vol. 13, No. 3-4, pp. 271-286.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔