(3.238.7.202) 您好!臺灣時間:2021/03/01 21:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊博丞
研究生(外文):Bo-Cheng Yang
論文名稱:鐵鈀錳鐵磁性形狀記憶合金之探討
論文名稱(外文):Investigation of ferromagnetic Fe-Pd- Mn alloy
指導教授:林英志林英志引用關係
指導教授(外文):Yin-Chih LIN
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:50
中文關鍵詞:Fe-Pd-Mn合金鐵磁性形狀記憶合金微結構
外文關鍵詞:Fe-Pd-Mn alloysFerromagnetic shape memory alloyMcrostructure
相關次數:
  • 被引用被引用:4
  • 點閱點閱:996
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
Fe-30%Pd合金添加1.5%Mn元素的鐵磁性形狀記憶合金(FSMA),經均質化熱處理後,再於950℃/1.5小時固溶(ST)水冷,經415℃/15小時與475℃/75小時時效(Aged)處理後,藉由掃瞄式電子顯微鏡(SEM)、調幅式差掃瞄量熱計儀(DSC)、x-ray繞射儀、穿透式電子顯微鏡(TEM)、振動測磁儀(VSM)等儀器,觀察分析比較熱處理後三種試樣內部機械性質、磁性相微結構與磁滯曲線。
實驗結果顯示,試樣ST與Aged熱處理後,利用SEM與TEM觀察,皆發現了L10-FCT麻田散鐵雙晶微結構。x-ray繞射分析發現在950°C/1.5h ST試樣出現(111)、(222)面為FCC相,其餘面為L10-FCT相,而且ST+475°C/15h Aged與ST+475°C/75h Aged兩種試樣,均為L10-FCT相,表示Aged過後,FCC相已轉變為FCT相,同時x-ray分析結果亦與SEM與TEM觀察結果相吻合。
比較950°C/1.5h ST與ST+475°C/15h Aged兩種試樣之磁滯曲線圖,兩者之飽和磁化量約在4000Oe位置,其中以950°C/1.5h ST的Ms=166.1(emu/g),飽和磁化量為最大,起始斜率也以950°C/1.5h ST較高。950°C/1.5h ST 試樣之磁滯曲線,其磁矯頑力甚小,此性質適合應用於微致動器之製造。而ST+475°C/15h Aged試樣,其磁矯頑力較大,此種磁性質適合應用於記憶體上。比較ST+475°C/15h Aged與ST+475°C/75h Aged兩種試樣之磁滯曲線圖,顯示ST+475°C/15h Aged試樣具有較多的磁矯頑力,其原因為時效處理後,L10-FCT相數量較多所造成的結果。
Ferromagnetic shape memory alloy (FSMA) of Fe-30Pd-1.5Mn (at%) , specimens after homogeneous heat treatment, then solution treatment (ST) at 950℃ for 1.5h , when aged treatment at 415℃/1.5h and 475℃/75h , The magnetic structure and magnetic property of the ST and ST+aged specimens were investigated by SEM, DSC, x-ray diffraction, TEM and VSM. The results indicate that the increase of coeravity of the aged specimen was ascribed to much more L10 martensite precipitation in the matrix.

The experimental results showed that after specimen ST and Aged heat treatment underwent SEM and the TEM observation, they displayed L10-FCT matesite twin microstructure. X-ray diffraction analysis discovery presents (111), (222) at 950°C for 1.5h, that the ST specimen is FCC, it laps is L10-FCT; moreover, from now on Aged will be L10-FCT, indicating that FCC transformed is FCT. Simultaneously, the x-ray analysis result also tallies with SEM and the TEM observed result.

Regarding the nature of magnetism, at 950°C for 1.5h, the ST specimen gauges the hysteresis curve; its magnetism coercive force is really small, and this suits applications in manufacturing micro actuating units. With the ST + at 475°C for 15hrs, the Aged specimen’s magnetic coercive force is strong, so this kind of magnetic nature suits memory applications.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 ix

第一章 緒論 1
1-1 前言 1
1-2 麻田散體誘發的形式 2
1-2-1 應力誘發麻田散體( SIM ) 2
1-2-2 形狀記憶合金(SMA) 2
1-2-3 麻田散體的內應力再取向過程 3
1-2-4 麻田散體溫度下的相變態過程 3
1-3 磁場誘發的麻田散體 5
1-3-1 磁轉換磁致伸縮 5
1-3-2 普通磁致伸縮材料(非FSMA)變形方式 5
1-3-3 新型的FSMA磁致伸縮 5
1-3-4 鐵磁性形狀記憶合金(FSMA)自我調適行為 6
1-3-5 磁異向性 7
1-3-6 麻田散體BCVs結構 8
1-4 鐵鈀合金文獻回顧 9
1-4-1 鐵磁性Fe-Pd形狀記憶合金的優勢 9
1-4-2 Fe-Pd麻田散體相變 9
1-4-3 爭議性的FCT麻田散體相變 10
1-4-4 Pd含量與相變化之關係 10
1-4-5 1-4-5. Fe-Pd合金之 Ms溫度對於Pd含量的關係圖 10
1-4-6 矯頑磁力 10
1-4-7 添加第三元素的影響 11
1-4-8 研究目的 11

第二章 實驗方法 19
2-1 試樣之準備 19
2-2 X-ray繞射分析 19
2-3 SEM顯微結構觀察 20
2-4 TEM之觀察 20
2-5 DSC測量 20
2-6 VSM 磁性量測 21
2-7 維克氏硬度量測 21

第三章 結果與討論 27
3-1 掃描式電子顯微鏡(SEM)微結構觀察 27
1. 950°C/1.5h ST試樣之SEM微結構分析 27
2. 475°C/15h Aged試樣之SEM微結構分析 27
3. 475°C/75h Aged試樣之SEM微結構分析 27
4. 試樣之EDS分析 28
3-2 DSC熱分析 28
3-3 X-ray繞射分析 28
3-4 TEM之分析 29
1. 950°C/1.5h ST試樣之TEM分析 29
2. 475°C/15h Aged試樣TEM分析 29
3. 475°C/75h Aged試樣TEM分析 30
3-5 VSM磁性性質量測 30
3.6 維克氏硬度測量 31

第四章 結論 45
4-1 結論 45
4-2 未來研究方向與建議 46

參考文獻 47

簡歷 50
[1] T.Klemmer,D.Hoydick ,et al. ,1995,“ Magnetic hardening and coercivity mechanisms in L10 ordered FePd Ferromagnets”,Scripta Metallurgica et Materialia,Vol.33,Nos.10/11,pp.1793-1805
[2] Hiroyuki Kato, Yuanchang Liang,et al. ,2002, “Stress-induced FCC/FCT phase transformation in Fe–Pd alloy”, Scripta Metallurgica 46, pp.471-475
[3] 楊大智,吳鍚侃等編著,2004,“智能材料與智能系統”,頁132-135
[4] 王怡文, 胡塵滌,2004,Fe-Pd鐵磁性記憶合金加第三元素, 國立清華大
學,碩士論文, 頁1-13
[5] Yasubumi Furuya,Nesbitt W,et al.,1998,“Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at%Pd alloy”,Materials Transactions,vol.39,No.12,pp.1248-1254
[6] Taishi Wada,Tetsuya Tagawa,et al. ,2003,“Martensitic transformation in Pd-rich Fe–Pd–Pt alloy”, Scripta Metallurgica 48,pp.207-211
[7] G.Y. Guo,Y.L.Wang,et al. ,2002,“On the orbital magnetic moment and anisotropy energy of the ordered Fe0.5Pd0.5 alloy”,Journal of Magnetism and Magnetic Materials,vol.239 , pp.66-69
[8] T.Kubota,T.Okazaki,et al.,2002,“Large magnetostriction in rapid-solidified ferromagnetic shape memory Fe-Pd alloy”, Journal of Magnetism and Magnetic Materials,vol.239 ,pp.551-553
[9] D.Vokoun,C.T. Hu,et al.,2003,“Magnetic properties of annealed Fe–29.9 at% Pd ribbons”, Journal of Magnetism and Magnetic Materials,vol.264,pp.169-174
[10] Taishi Wada, Yuanchang Liang,et al. ,2003,“Structural change and straining in Fe–Pd polycrystals by magnetic field”, Materials Science and Engineering, vol.361,pp.75-82
[11] Hiroyuki Kato, Taishi Wada,et al. ,2002,“Martensite structure in polycrystalline Fe–Pd”, Materials Science and Engineering,vol.332,pp.134-139
[12] Masaaki Sugiyama,Ryuichiro Oshima,et al. ,1984,“Martensitic Transformation in the Fe--Pd Alloy System”,Transactions of the Japan Institute of Metals,vol.25, No.9,pp.585-592
[13] B.Zhang,W.A.Soffa.,et al.,1992,“Magnetic domains and coercivity in polytwinned ferromagnets”,Physica status solidi A,vol.131,pp. 707-725,
[14] Taiji Sohmura,Ryuichiro Oshima,et al.,1980,“Thermoelastic F.C.C.-F.C.T. Martensitic Transformation in Fe-Pd Alloy” , Scripta Metallurgica,vol.14,pp.855-856
[15] Hakaru Masumoto,Kiyoshi Watanabe,et al.,1983,“The Effect of Silver on Permanent Magnet Properties of Iron and Palladium Alloys”,Transactions of the Japan Institute of Metals,vol.24,No.3,pp.139-143
[16] A.R. Deshpande ,H. Xu,et al.,2004,“Effects of grain size on coercivity of combined-reaction-processed FePd intermetallics”,Acta Materialia 52,pp.2903-2911
[17] 林麗娟,1994,“X光繞射原理及其應用”,工業材料,第八十六期,頁100-109
[18] A.R. Deshpande, J.M.K. Wiezorek,et al.,2004,“Magnetic age hardening of cold-deformed bulk equiatomic Fe–Pd intermetallics during isothermal annealing”,Journal of Magnetism and Magnetic Materials 270,pp.157–166
[19] J.J FELTEN,T.J. KINKUS,et al. ,1997,“Solid-solution structure and the weakly first-order displacive transformation in Fe-Pd alloys”,Metallurgical and Materials Transactions A,vol.28,pp. 527-536
[20] J.Cui,T.W.Shield,et al. ,2004,“Phase transformation and magnetic anisotropy of an iron palladium ferromagnetic shape-memory alloy”, Acta Materialia 52,pp.35-47
[21] D.Vokoun,C.T.Hu,et al. ,2002,“Two-way shape memory effect in Fe-28.8 at.% Pd melt-spun ribbons”,Scriptaa Materialia 47,pp. 453-457
[22] C.T.Hu,T.Goryczka,et al.,2004,“Effects of the spinning wheel velocity on the microstructure of Fe–Pd shape memory melt-spun ribbons”, Scriptaa Materialia 50, pp.539-542
[23] Shozo Inoue,Kanryu Inoue,et al.,2003 ,“Shape memory behavior of Fe–Pd alloy thin films prepared by dc magnetron sputtering”,Materials Science & Engineering A, vol.339,pp.29-34
[24] Fernanda M. Takata , Gyana Pattanaik,et al. ,2008 ,“Synthesis of L10 Fe–Pd films by electrodeposition and thermal annealing”,Electrochemistry ommunications 10,pp.568-571
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔