跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉欣怡
研究生(外文):Shin-Yi Liu
論文名稱:生物資訊邏輯系統比較器餘除器架構:RSA問題分子計算最佳化
論文名稱(外文):Bioinformatics Logic Computing: Constructing RSA Public-key Optimal Bio-molecular Cryptosystem
指導教授:何善輝
指導教授(外文):Shan-Hui Ho
學位類別:碩士
校院名稱:銘傳大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:114
中文關鍵詞:RAS密碼系統生物平行計算分子運算架構DNA運算架構
外文關鍵詞:Molecular-based supercomputingRSA public-key cryptosystemDNA-based supercomputingBiological parallel computing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
近年來DNA計算為近年來熱門的研究領域,其可解決許多困難的問題,在此論文中我們以Adleman-Lipation Model(Adleman 1994)為基礎提出生物邏輯平行餘除器架構及生物邏輯平行比較器架構,我們可將此生物邏輯平行餘除器架構及生物邏輯平行比較器架構應用於RSA密碼系統之上。
RSA密碼系統是在現行網際網路上一個相當普遍的演算法,它用來確保網路上資料傳輸之安全性,在此論文中,我們將生物邏輯平行架構應用在RAS密碼系統上,首先,我們用XOR, AND 及OR邏輯閘建構生物邏輯減法器,第二步運用生物邏輯減法器與生物邏輯比較器建構生物邏輯除法器,最後我們將此架構應用於RSA密碼系統上,可以使RAS密碼系統運算效率提升並且更加安全。
DNA computing is one of popular research fields in recent years, it can solve many NP problems, include the satisfiability problem(Braich et al.), the maximum cut problem(Xiao et al. 2005) and the binary integer programming problem (Yeh et al. 2006), in this thesis we proposed a bio-molecular Parallel Modular model and a bio-molecular Comparator model base on Logic Operations in the Adleman-Lipation Model(Adleman 1994), we can apply Bio-informatics bio-logic computing model with especially designed Modular and Comparator on RSA public-key bio-molecular cryptosystem.
RSA public-key cryptosystem is one of most popular algorithms used for security on the internet. In the thesis we proposed a bioinformatics bio-logic molecular RSA public-key cryptosystem based upon the Adleman-Lipation model. First, we used XOR, AND and OR bio-logic gates to construct the bio-logic Comparator. Second, we used bio-logic Comparator and Subtractor to construct the bio-logic Modular. Finally we used bio-logic molecular Modular and Comparator for a better bio-molecular RSA cryptosystem building up in using the public and secret key faster and better.
List of Contents...................................iv
List of Table...................................v
List of Figure...................................vi
1. Introduction...................................1
2. Literature...................................3
2.1. RSA cryptosystem...................................3
2.2. The Structure of DNA...................................4
2.3. Adleman’s Experiment for Solution of a Satisfability Problem...................................5
2.4. DNA Manipulations...................................6
2.5. Famous DNA Models...................................7
3. The Optimization of the Boolean Bio-circuit Operations and Subtractor with Bio-molecular Computing...................................9
3.1. NOT Operation on Bio-molecular...................................9
3.2. OR Operation on Bio-molecular...................................12
3.3. AND Operation on Bio-molecular...................................15
3.4. NOR Operation on Bio-molecular...................................19
3.5. NAND Operation on Bio-molecular...................................23
3.6. XOR Operation on Bio-molecular...................................27
3.7. XNOR Operation on Bio-molecular...................................31
3.8. Construction of a Paralle Subtractor on Bio-molecular 35
4. DNA Algorithms Based on the Adleman-Lipton Model for Constructing Comparator and Modular...................................40
4.1. Comparator on Bio-molecular Computing...................................41
4.2. Modular on Bio-molecular Computing...................................47
5. Frame of the RSA Cryptosystem on DNA Algorithms Based...................................61
5.1. Finding Two Large Prime Numbers...................................64
5.2. Select a Small Odd Integer e (public-key)...................................79
5.3. Compute the secret–key d...................................92
5.4. Encryption...................................97
5.5. Decryption...................................102
6. Conclusions...................................104
References...................................104
Adleman, L. "Molecular computation of solutions to combinatorial problems," Science (266:Nov) 1994, pp 1021-1024.
Adleman, L., Rothemund, P.W.K., Roweis, S., and Winfree, E. "On applying molecular computation to the Data Encryption Standard," The 2nd annual workshop on DNA Computing, American Mathematical Society, Princeton University, 1999, pp. 31-44.
Amos, M. "DNA Computation," in: computer science, Warwick, 1997.
Arita, M., Suyama, A., and Hagiya, M. "A heuristic approach for the Hamiltonian path problem with molecules," 2nd Genetic Programming Conf, 1997, pp. 457–462.
Barua, R., and Misra, J. "Binary arithmetic for DNA computers," 8th Int. Workshop DNA Based Computers, 2002, pp. 124-132.
Boneh, D., Dunworth, C., and Lipton, R.J. "Breaking DES using a molecular computer," 1st DIMACS Workshop on DNA Based Computers, American Mathematical Society, 1996a, pp. 37-66.
Boneh, D., Dunworth, C., Lipton, R.J., and Sgall, J. "On the Computational Power of DNA," Discrete Applied Mathematics (71) 1996b, pp 79-94.
Braich, R.S., Johnson, C., Rothemund, P.W.K., Hwang, D., Chelyapov, N., and Adleman, L.M. "Solution of a satisfiability problem on a gel-based DNA computer," 6th International Conference on DNA Computation in the Springer-Verlag Lecture Notes in Computer Science series.
Braich, R.S., Johnson, C., Rothemund, P.W.K., Hwang, D., Chelyapov, N., and Adleman, L.M. "Solution of a 20-variable 3-SAT problem on a DNA computer," Science (296:5567), April 2002, pp 499-502.
Chang, W.-L., and Guo, M. "Solving the Set-cover Problem and the Problem of Exact Cover by 3-Sets in the Adleman-Lipton''s Model," BioSystems (72:3) 2003, pp 263-275.
Chang, W.-L., Guo, M., and Ho, M. "Towards solution of the set-splitting problem on gel-based DNA computing," Future Generation Computer Systems (20:5), June 15 2004a, pp 875-885.
Chang, W.-L., Ho, M., and Guo, M. "Molecular solutions for the subset-sum problem on DNA-based supercomputing," BioSystems (73:2) 2004b, pp 117-130.
Chang, W.-L., Ho, M., and Guo, M. "Fast parallel molecular algorithms for DNA-based computation: factoring integers," IEEE Transactions on Nanobioscience (4:2) 2005, pp 149-163.
Chang, W.L., Ho, M., and Guo, M. "Fast parallel molecular solution to the dominating-set problem on massively parallel bio-computing," Parallel Computing (Elsevier Science) (30:9 & 10) 2004c, pp 1109-1125.
Eckstein, F., Oligonucleotides, and Anologues," in: Oxford Univ, U. K., 1991.
Feynman, R.P. "In minaturizatio," Reinhold Publishing Corporation, pp. 282-296.
Gait, G.M.B.a.M.J. "Nucleic Acids in Chemistry and Biology," Washington (ed.), DC: IRL, 1990.
Guarneiri, F., Fliss, M., and Bancroft, C. "Making DNA add," Science (273) 1996, pp 220–223.
Gupta, V., Parthasarathy, S., and Zaki, M.J. "Arithmetic and logic operations with DNA," 3rd DIMACS Workshop DNA Based Computers, 1997, pp. 212–220.
Lipton, R.J. "DNA solution of hard computational problems," Science (268:) 1995, pp 542-545.
Morimot, N., Arita, M., and Suyama, A. "Solid phase DNA solution to the Hamiltonian path problem," 3rd DIMACS Workshop DNA Based Computers, 1999, pp. 93-101.
Paun, G., Rozenberg, G., and Salomaa, A. "DNA Computing: New Computing Paradigms," New York, 1998.
Perez-Jimenez, M.J., and Sancho-Caparrini, F. "Solving knapsack problems in a sticker based model," 7nd Annu.Workshop DNA Computing, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 2001, pp. 161-171.
Qiu, Z.F., and Lu, M. "Arithmetic and logic Operations with DNA computers," 2nd IASTED Int. Conf. Parallel and Distributed Computing and Networks, 1998, pp. 481-486.
Quyang, Q., Kaplan, P.D., Liu, S., and Libchaber, A. "DNA solution of the maximal clique problem," Science (278) 1997, pp 446-449.
Rivest, R.L., A.Shamir, and Adleman, L. "A method for obtaining digital signatures and public-key crytosystem," Commun. ACM (21) 1987, pp 120-126.
Roweis, S., Winferr, E., Burgoyne, R., Chelyapov, N.V., Goodman, M.F., Rothemund, P.W.K., and Adleman, L.M. "A sticker based model for DNA computation," in: DIMACS series in Discrete Mathematics and Theoretical Computer Science, L. Landweber and E. Baum (eds.), 1999, pp. 1-29.
Shin, S.-Y., Zhang, B.-T., and Jun, S.-S. "Solving traveling salesman problems using molecular programming," in Proc. 1999 Congr. Evolutionary Computation, 1999, pp. 994–1000.
Sinden, R.R. "DNA Structure and Function," New York: Academic, 1994.
Watson, J., Gilman, M., Witkowski, J., and Zoller, M. "Recombinant DNA," S. Francisco (ed.), CA: Freeman, 1992.
Watson, J., Hoplins, N., Roberts, J., and al, e. "Molecular Biology of the Gene," M. Park (ed.), CA: Benjamin/Cummings, 1987.
Xiao, D., Li, W., Zhang, Z., and He, L. "Solving the maximum cut problems in the Adleman–Lipton model," BioSystems (82) 2005, pp 203-207.
Yeh, C.-W., Chu, C.-P., and Wu, K.-R. "Molecular solutions to the binary integer programming problem based on DNA computation," Biosystems (83:1), January 2006, pp 56-66.
王郁仁 "生物資訊邏輯系統加法器乘法器架構:最大權重Clique問題及有限場分子計算最佳化," in: IM, MCU, 2008
黃俊瑜 "生物資訊邏輯系統減法器除法器架構:蛋白質摺疊及確認問題," MCU, 2008
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top